Regulations Compliance Report

Printed on 18 Dec		0.00		
Project Informati				
Assessed By:	Carlos Melgar (S	TRO031596)	Building Type: Flat	
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 62.41m ²	
Site Reference :	Buntingford Area	2	Plot Reference: Plot 49 - 2	B SD
Address :	Plot 49, Snells M	ead, Buntingford, SG9 9JG		
Client Details:				
Name:	Wheatley Winton	Hayes LTD		
Address :	Wheatley House,	Dunhams Lane , Letchworth G	arden City, SG6 1BE	
-	rs items included v ete report of regula	vithin the SAP calculations. tions compliance.		
1a TER and DEI	R			
Fuel for main hea	ting system: Mains g	jas		
Fuel factor: 1.00 (- /			
-	oxide Emission Rate		20.47 kg/m ²	
Dwelling Carbon I 1b TFEE and DF	Dioxide Emission Ra	ite (DER)	19.43 kg/m²	OK
	ergy Efficiency (TFE		55.4 kWh/m²	
-	nergy Efficiency (DF		50.3 kWh/m ²	
		/		ок
2 Fabric U-value	es			
Element		Average	Highest	
External		0.24 (max. 0.30)	0.24 (max. 0.70)	OK
Party wa	.11	0.00 (max. 0.20)	-	OK
Floor Roof		0.20 (max. 0.25) (no roof)	0.20 (max. 0.70)	OK
Opening	c	(10100) 1.29 (max. 2.00)	1.40 (max. 3.30)	
	1		1.40 11101 3.300	OK
			1.40 (max. 3.30)	OK
2a Thermal brid	lging	from linear thermal transmittand		OK
2a Thermal brid	lging bridging calculated t			OK
2a Thermal brid Thermal 3 Air permeabil	lging bridging calculated t			ок
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum	lging bridging calculated i ity bility at 50 pascals		ces for each junction 5.01 (design value)	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity ibility at 50 pascals ency	from linear thermal transmittand	ces for each junction 5.01 (design value) 10.0	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum	lging bridging calculated f ity ibility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators	ces for each junction 5.01 (design value) 10.0	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity ibility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators Brand name: Ideal	ces for each junction 5.01 (design value) 10.0 index 017956): s or underfloor heating - mains gas	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity ibility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators Brand name: Ideal Model: LOGIC COMBI ESP	ces for each junction 5.01 (design value) 10.0 index 017956): s or underfloor heating - mains gas	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity bility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators Brand name: Ideal Model: LOGIC COMBI ESP Model qualifier: 30	ces for each junction 5.01 (design value) 10.0 index 017956): s or underfloor heating - mains gas	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity bility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators Brand name: Ideal Model: LOGIC COMBI ESP	ces for each junction 5.01 (design value) 10.0 index 017956): s or underfloor heating - mains gas	
2a Thermal brid Thermal 3 Air permeabili Air permea Maximum 4 Heating efficie	lging bridging calculated f ity bility at 50 pascals ency	from linear thermal transmittand Database: (rev 421, product Boiler systems with radiators Brand name: Ideal Model: LOGIC COMBI ESP Model qualifier: 30 (Combi)	ces for each junction 5.01 (design value) 10.0 index 017956): s or underfloor heating - mains gas	

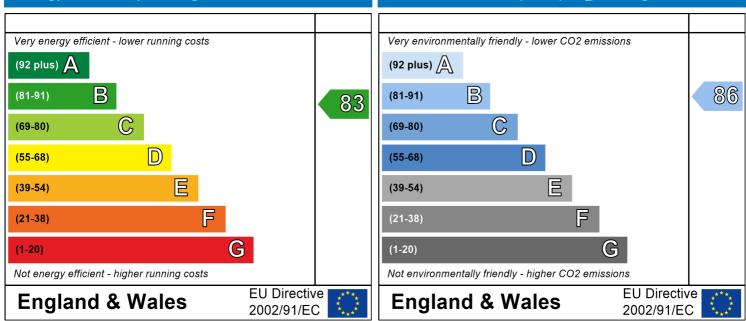
Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	TTZC by plumbing and e	ectrical services	ОК
Hot water controls:	No cylinder		
	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with l	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (Thames valle	y):	Slight	ОК
Based on:			
Overshading:		Average or unknown	
Windows facing: South East		3.67m ²	
Windows facing: North West		0.96m ²	
Windows facing: South West		1.64m²	
Windows facing: North East		0.96m ²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller	
		Closed 100% of daylight hours	6
10 Key features			
Doors U-value		1.09 W/m²K	

Party Walls U-value

1.09 W/m² 0 W/m²K

Predicted Energy Assessment


Plot 49 Snells Mead Buntingford SG9 9JG Dwelling type: Date of assessment: Produced by: Total floor area: Ground floor Flat 18 December 2017 Carlos Melgar 62.41 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

				User D	etails:						
Assessor Name: Software Name:	Carlos Melo Stroma FS/	-			Stroma Softwa					031596 on: 1.0.4.10	
					Address:	Plot 49	- 2B SD)			
Address :	Plot 49, Sne	lls Mead,	Buntin	gford, S	G9 9JG						
1. Overall dwelling dimer	nsions:				()						
Ground floor				Area 61		(1a) x	Av. He i	i ght(m) 4	(2a) =	Volume(m ³) 149.78	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+	(1n) 6	2.41	(4)					
Dwelling volume						(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	149.78	(5)
2. Ventilation rate:					_						
Number of chimneys Number of open flues	main heating		ondary ating 0	y	0 0] = [total 0 0		40 = 20 =	m³ per hour	(6a) (6b)
			0		0					-]``
Number of intermittent far	S					Ľ	2		10 =	20	(7a)
Number of passive vents							0	X ?	10 =	0	(7b)
Number of flueless gas fir	es						0	× 4	40 =	0	(7c)
									Air ch	anges per hou	ır
Infiltration due to chimney If a pressurisation test has be						continue fro	20 om (9) to (÷ (5) =	0.13	(8)
Number of storeys in the	e dwelling (ns)								0	(9)
Additional infiltration								[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	esent, use the val gs); if equal user	ue correspo 0.35	onding to	the greate	er wall area	a (after	uction			0	(11)
If suspended wooden flo			d) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente			anad							0	(13)
Percentage of windows Window infiltration		augni sin	spea		0.25 - [0.2	x (14) - 1	001 =			0	(14)
Infiltration rate					(8) + (10) -			+ (15) =		0	(15) (16)
Air permeability value, o	50. expresse	d in cubic	metre						area	5.01000022888184	4
If based on air permeabilit				•		•				0.38	(18)
Air permeability value applies	if a pressurisatio	n test has b	een don	e or a deg	ree air per	meability i	is being us	sed], ,
Number of sides sheltered	ł				(22)		- 11			1	(19)
Shelter factor					(20) = 1 - [9)] =			0.92	(20)
Infiltration rate incorporation	-				(21) = (18)	x (20) =				0.36	(21)
Infiltration rate modified fo									_	I	
	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe					a =				. –	I	
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4										
(22a)m= 1.27 1.25 1	.23 1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
~ ' '	0.45	0.44	0.44	0.39	0.38	0.34	0.34	0.33	0.36	0.38	0.4	0.42		
	ate effec echanica		•	rate for t	ne appli	cable ca	se					1) (23a)
				endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N	N5)), othe	rwise (23t	o) = (23a)		l ſ) (23b)
				iency in %								l [) (23c)
a) If	balance	d mech	anical ve	entilation	with hea	at recove	erv (MVI	HR) (24a	a)m = (2	2b)m + (:	23b) × [ו (23c) – 1		
(24a)m=		0	0	0	0	0	0	0	0	0	0	0	-	(24a)
b) lf	balance	d mech	anical ve	entilation	without	heat rec	overy (N	MV) (24b)m = (2	2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
				ntilation o then (24o	•	•				.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous m = (22						0.5]				
(24d)m=	0.6	0.6	0.59	0.58	0.57	0.56	0.56	0.55	0.56	0.57	0.58	0.59		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in boy	k (25)					
(25)m=	0.6	0.6	0.59	0.58	0.57	0.56	0.56	0.55	0.56	0.57	0.58	0.59		(25)
3. He	at losse	s and he	eat loss i	paramete	ər:									
	at losse	s and he Gros area	SS	paramete Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²·ł		A X k kJ/K
ELEN		Gros	SS	Openin	gs									
ELEN Doors	IENT	Gros	SS	Openin	gs	A ,n	n²	W/m2	K	(W/I				kJ/K
ELEN Doors Doors	IENT Type 1	Gros area	SS	Openin	gs	A ,r	n ² x	W/m2	2K	(W/ł 2.1255				kJ/K (26)
ELEN Doors Doors Windo	MENT Type 1 Type 2	Gros area	SS	Openin	gs	A ,r 1.95	n ² x x x x ^{1,}	W/m2 1.09 1.09	K = 0.04] =	(W/H 2.1255 2.1255				kJ/K (26) (26)
ELEN Doors Doors Windo Windo	IENT Type 1 Type 2 ws Type	Gros area	SS	Openin	gs	A ,r 1.95 1.95 3.67	n ² x x x ¹ x ¹	W/m2 1.09 1.09 /[1/(1.4)+	K = = = 0.04] = 0.04] =	(W/H 2.1255 2.1255 4.87				kJ/K (26) (26) (27)
ELEN Doors Doors Windo Windo Windo	MENT Type 1 Type 2 ws Type ws Type	Gros area 9 1 9 2 9 3	SS	Openin	gs	A ,r 1.95 1.95 3.67 0.96	n ² x x x x ¹	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+	K = 0.04] = 0.04] = 0.04] =	(W/H 2.1255 2.1255 4.87 1.27				kJ/K (26) (26) (27) (27)
ELEN Doors Doors Windo Windo Windo	MENT Type 1 Type 2 ws Type ws Type ws Type	Gros area 9 1 9 2 9 3	SS	Openin	gs	A ,r 1.95 1.95 3.67 0.96 1.64	n ² x x x ¹ .	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K = 0.04] = 0.04] = 0.04] =	(W/I 2.1255 2.1255 4.87 1.27 2.17			<	kJ/K (26) (26) (27) (27) (27)
ELEN Doors Doors Windo Windo Windo	MENT Type 1 Type 2 ws Type ws Type ws Type	Gros area 9 1 9 2 9 3	ss (m²)	Openin	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27		kJ/m²∙ŀ		kJ/K (26) (27) (27) (27) (27) (27)
ELEN Doors Windo Windo Windo Windo Floor Walls	MENT Type 1 Type 2 ws Type ws Type ws Type	Gros area 2 3 4 76.7	ss (m²)	Openin m	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96 62.41	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 (1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.2	K = 0.04] = 0.04] = 0.04] = 0.04] = =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27 1.27 12.482		kJ/m²+k 75		kJ/K (26) (27) (27) (27) (27) (27) (27) (28)
ELEN Doors Windo Windo Windo Windo Floor Walls	MENT Type 1 Type 2 ws Type ws Type ws Type ws Type	Gros area 2 3 4 76.7	ss (m²)	Openin m	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96 62.41 65.62	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 (1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.2	K = 0.04] = 0.04] = 0.04] = 0.04] = =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27 1.27 12.482		kJ/m²+k 75		kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (28) (3248.19 (29)
ELEN Doors Doors Windo Windo Windo Floor Walls Total a	MENT Type 1 Type 2 ws Type ws Type ws Type ws Type area of e wall	Gros area 2 3 4 76.7	ss (m²)	Openin m	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96 62.41 65.62 139.10	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.2 0.24	K = 0.04] = 0.04] = 0.04] = 0.04] = = = =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27 1.27 12.482 15.75		kJ/m²-ŀ 75 49.5		kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (28) 3248.19 (29) (31)
ELEN Doors Doors Windo Windo Windo Floor Walls Total a Party o	MENT Type 1 Type 2 ws Type ws Type ws Type ws Type area of e wall	Gros area 2 3 4 76.7	ss (m²)	Openin m	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96 62.41 65.62 139.10 34.69	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.2 0.24	K = 0.04] = 0.04] = 0.04] = 0.04] = = = =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27 1.27 12.482 15.75		kJ/m²-ŀ 75 49.5 45		kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEN Doors Doors Windo Windo Windo Windo Floor Walls Total a Party o Interna	VENT Type 1 Type 2 ws Type ws Type ws Type area of e wall ceiling	Gros area 2 3 4 76.7	ss (m²)	Openin m	gs 2	A ,r 1.95 1.95 3.67 0.96 1.64 0.96 62.41 65.62 139.10 34.69 62.41	n ² x x x x x x x x x x x x x x x x x x x	W/m2 1.09 1.09 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.2 0.24	K = 0.04] = 0.04] = 0.04] = 0.04] = = = =	(W/I 2.1255 2.1255 4.87 1.27 2.17 1.27 1.27 12.482 15.75		kJ/m²-ł 75 49.5 45 20		kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	42.07	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	12870.92	(34)
Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m ² K	= (34) ÷ (4) =	206.23	(35)
For design assessments where the details of the construction are not known	precisely the indicative values of TMP in Table 1f		-

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

8.32

(36)

	s of therma abric he		are not kr	own (36) =	= 0.15 x (3	1)			(33) +	(36) =			50.00	(27)
			alculator	d monthl	M.						25)m x (5)		50.39	(37)
venua	Jan	Feb	Mar	Apr	y May	Jun	Jul	Aug	Sep	= 0.33 x (Nov	Dec	1	
(38)m=	29.78	29.59	29.39	28.49	28.32	27.53	27.53	27.38	27.83	28.32	28.66	29.02		(38)
Heat t	ransfer o	coefficie	nt. W/K	I			I		(39)m	= (37) + (3	1 38)m		1	
(39)m=	80.18	79.98	79.79	78.88	78.71	77.92	77.92	77.77	78.22	78.71	79.05	79.41]	
		I	ļ				I		,	Average =	Sum(39)₁.	₁₂ /12=	78.88	(39)
Heat le	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.28	1.28	1.28	1.26	1.26	1.25	1.25	1.25	1.25	1.26	1.27	1.27		_
Numb	er of day	/s in mo	nth (Tab	le 1a)						Average =	Sum(40)₁.	12 /12=	1.26	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		•	•	•			•							
4. Wa	ater hea	ting ene	rav reau	irement:								kWh/y	ear:	
		Ŭ											•	
		ipancy,		/ [1 _ ovn			-130)2)] + 0.0)013 v (⁻	TEA _13		05	J	(42)
	A £ 13.		T 1.70 X	r [i - evb	(-0.0003	949 X (11	A-13.3)2)] + 0.0	J015 X (11 A - 13.	.9)			
								(25 x N)				.86]	(43)
		-			5% if the a /ater use, l	-	-	to achieve	a water us	se target o	f		•	
1101 11101			1	1									1	
I lot wor	Jan	Feb	Mar	Apr	May Vd,m = fa	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			· ·										1	
(44)m=	91.15	87.83	84.52	81.2	77.89	74.58	74.58	77.89	81.2	84.52	87.83	91.15		
Energy	content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	m x nm x [OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		994.33	(44)
(45)m=	135.17	118.22	121.99	106.36	102.05	88.06	81.6	93.64	94.76	110.43	120.54	130.9		_
										Total = Su	m(45) ₁₁₂ =	-	1303.73	(45)
lt instan	taneous v	/ater heati	ng at point	t of use (no	o hot water	· storage),	enter 0 in	boxes (46,) to (61)				1	
(46)m= Water	20.28 storage	17.73 loss:	18.3	15.95	15.31	13.21	12.24	14.05	14.21	16.56	18.08	19.64	J	(46)
	-) includir	ng any se	olar or W	/WHRS	storage	within sa	ame ves	sel		0]	(47)
If com	munity h	neating a	and no ta	ank in dw	velling, e	nter 110) litres in	(47)					1	
	•	-			-			ombi boil	ers) ente	er '0' in (47)			
Water	storage	loss:											_	
a) If n	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0]	(49)
-			-	e, kWh/ye	ear loss fact	or io not		(48) x (49)	=			0]	(50)
				•	le 2 (kW							0	1	(51)
If com	munity ł	neating s	ee secti	on 4.3			• •					-	1	
		from Ta										0]	(52)
Tempe	erature f	actor fro	m Table	2b								0	J	(53)
-			-	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0]	(54)
Enter	(50) or	(54) in (5	55)									0]	(55)

Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylind	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where ((H11) is fro	m Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Prima	y circuit	loss (ar	nual) fro	om Table	e 3					•		0		(58)
	•		,			59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	ostat)	-		
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	i loss ca	lculated	for each	month	(61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	14.59	13.15	14.53	14.02	14.46	13.96	14.4	14.44	13.99	14.5	14.08	14.57		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	149.76	131.37	136.52	120.37	116.51	102.02	96	108.08	108.75	124.93	134.62	145.48		(62)
Solar D	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	tion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)			-		
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Outpu	t from w	ater hea	ter											
(64)m=	149.76	131.37	136.52	120.37	116.51	102.02	96	108.08	108.75	124.93	134.62	145.48		_
								Outp	out from w	ater heate	r (annual)₁	12	1474.39	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	48.59	42.6	44.19	38.87	37.55	32.77	30.73	34.74	35	40.34	43.6	47.17		(65)
inclu	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	vater is f	rom com	munity h	eating	
5. In	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	is (Table	e 5), Wat	ts	_	_						_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	122.93	122.93	122.93	122.93	122.93	122.93	122.93	122.93	122.93	122.93	122.93	122.93		(66)
Lightir	ng gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	44.62	39.63	32.23	24.4	18.24	15.4	16.64	21.63	29.03	36.86	43.02	45.86		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	-		-	
(68)m=	267.14	269.91	262.92	248.05	229.28	211.64	199.85	197.08	204.06	218.93	237.71	255.35		(68)
Cookir	ng gains	(calcula	ated in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5	-			
(69)m=	49.34	49.34	49.34	49.34	49.34	49.34	49.34	49.34	49.34	49.34	49.34	49.34		(69)
Pumps	s and fai	ns gains	(Table §	5a)	•	•			•		•			
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losse	s e.g. ev	, aporatic	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96	-81.96		(71)
14/-1			•		•	•			•	•	•	•		
vvater	heating	gains (T	Table 5)											
(72)m=	heating 65.31	gains (T 63.39	Table 5) 59.4	53.98	50.46	45.51	41.31	46.7	48.62	54.22	60.56	63.4		(72)
(72)m=	65.31	<u> </u>	59.4	53.98	50.46						60.56 (1)m + (72)]	(72)
(72)m=	65.31	63.39	59.4	53.98 419.76	50.46 391.31						I			(72)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	0.96	×	11.28	x	0.5	x	1.11	=	4.17	(75)
Northeast 0.9x	0.77	x	0.96	x	22.97	×	0.5	x	1.11	=	8.49	(75)
Northeast 0.9x	0.77	x	0.96	x	41.38	x	0.5	x	1.11	=	15.29	(75)
Northeast 0.9x	0.77	x	0.96	x	67.96	×	0.5	x	1.11	=	25.12	(75)
Northeast 0.9x	0.77	x	0.96	x	91.35	x	0.5	x	1.11	=	33.76	(75)
Northeast 0.9x	0.77	x	0.96	x	97.38	x	0.5	x	1.11	=	35.99	(75)
Northeast 0.9x	0.77	x	0.96	x	91.1	x	0.5	x	1.11	=	33.67	(75)
Northeast 0.9x	0.77	x	0.96	×	72.63	x	0.5	x	1.11	=	26.84	(75)
Northeast 0.9x	0.77	x	0.96	×	50.42	x	0.5	x	1.11	=	18.64	(75)
Northeast 0.9x	0.77	x	0.96	x	28.07	×	0.5	x	1.11	=	10.37	(75)
Northeast 0.9x	0.77	x	0.96	×	14.2	×	0.5	x	1.11	=	5.25	(75)
Northeast 0.9x	0.77	x	0.96	×	9.21	×	0.5	x	1.11	=	3.41	(75)
Southeast 0.9x	0.77	x	3.67	x	36.79	x	0.5	x	1.11	=	51.99	(77)
Southeast 0.9x	0.77	x	3.67	x	62.67	x	0.5	x	1.11	=	88.55	(77)
Southeast 0.9x	0.77	x	3.67	×	85.75	×	0.5	x	1.11	=	121.16	(77)
Southeast 0.9x	0.77	x	3.67	x	106.25	x	0.5	x	1.11	=	150.13	(77)
Southeast 0.9x	0.77	x	3.67	x	119.01	x	0.5	x	1.11	=	168.16	(77)
Southeast 0.9x	0.77	x	3.67	x	118.15	x	0.5	x	1.11	=	166.94	(77)
Southeast 0.9x	0.77	x	3.67	x	113.91	x	0.5	x	1.11	=	160.95	(77)
Southeast 0.9x	0.77	x	3.67	x	104.39	x	0.5	x	1.11	=	147.5	(77)
Southeast 0.9x	0.77	x	3.67	×	92.85	×	0.5	x	1.11	=	131.2	(77)
Southeast 0.9x	0.77	x	3.67	x	69.27	x	0.5	x	1.11	=	97.87	(77)
Southeast 0.9x	0.77	x	3.67	×	44.07	x	0.5	x	1.11	=	62.27	(77)
Southeast 0.9x	••••	x	3.67	x	31.49	x	0.5	x	1.11	=	44.49	(77)
Southwest _{0.9x}		x	1.64	x	36.79		0.5	x	1.11	=	23.23	(79)
Southwest _{0.9x}		x	1.64	×	62.67		0.5	x	1.11	=	39.57	(79)
Southwest _{0.9x}		x	1.64	x	85.75		0.5	x	1.11	=	54.14	(79)
Southwest _{0.9x}		x	1.64	×	106.25		0.5	x	1.11	=	67.09	(79)
Southwest0.9x		x	1.64	×	119.01	ļ	0.5	x	1.11	=	75.14	(79)
Southwest _{0.9x}		x	1.64	×	118.15	ļ	0.5	x	1.11	=	74.6	(79)
Southwest _{0.9x}		x	1.64	×	113.91	ļ	0.5	x	1.11	=	71.92	(79)
Southwest0.9x	••••	x	1.64	×	104.39	ļ	0.5	x	1.11	=	65.91	(79)
Southwest _{0.9x}		x	1.64	×	92.85		0.5	x	1.11	=	58.63	(79)
Southwest _{0.9x}		x	1.64	×	69.27		0.5	x	1.11	=	43.74	(79)
Southwest _{0.9x}	••••	x	1.64	×	44.07]	0.5	x	1.11	=	27.83	(79)
Southwest _{0.9x}		X	1.64	×	31.49]	0.5	x	1.11	=	19.88	(79)
Northwest 0.9x		X	0.96	×	11.28	×	0.5	x	1.11	=	4.17	(81)
Northwest 0.9x	_	X	0.96	×	22.97	×	0.5	×	1.11	=	8.49	(81)
Northwest 0.9x	0.77	x	0.96	×	41.38	×	0.5	x	1.11	=	15.29	(81)

Northursot							л г						—
Northwest 0.9x			0.9		×	67.96		0.5		1.11	=	25.12	(81)
Northwest 0.9x		×	0.9	96	×	91.35] × [0.5		1.11	=	33.76	(81)
Northwest 0.9x	-	×	0.9	96	x	97.38	X	0.5	_ × _	1.11	=	35.99	(81)
Northwest 0.9x	•	×	0.9	96	×	91.1	X	0.5	×	1.11	=	33.67	(81)
Northwest 0.9x	0.77	×	0.9	96	x	72.63	×	0.5	×	1.11	=	26.84	(81)
Northwest 0.9x	0.77	x	0.9	96	x	50.42	×	0.5	x	1.11	=	18.64	(81)
Northwest 0.9x	0.77	x	0.9	96	x	28.07	×	0.5	x	1.11	=	10.37	(81)
Northwest 0.9x	0.77	×	0.9	96	x	14.2] x [0.5	x	1.11	=	5.25	(81)
Northwest 0.9x	0.77	x	0.9	96	x	9.21	x	0.5	x	1.11	=	3.41	(81)
Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Total gains –	internal a	and solar	r (84)m =	= (73)m ·	+ (83)m	, watts	-					L	
(84)m= 553.95	611.35	653.77	687.21	702.13	679.4	651.33	625.8	602.12	565.69	535.19	529.12		(84)
7. Mean inte	ernal tem	perature	(heating	season)								
Temperatur	e during h	neating p	eriods in	n the livi	ng area	from Tal	ble 9,	Th1 (°C)				21	(85)
Utilisation fa	actor for g	ains for	living are	ea, h1,m	(see T	able 9a)							
Jan	Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec		
(86)m= 0.98	0.97	0.95	0.91	0.82	0.66	0.51	0.54	0.76	0.92	0.97	0.98		(86)
Mean intern	al temper	rature in	living an	ea T1 (fo	ullow st	ens 3 to 7	7 in Ta	ble 9c)		•	•		
(87)m= 19.65	· ·	20.09	20.44	20.73	20.92	20.98	20.9		20.49	20.01	19.62		(87)
	1		l						1				
Temperatur (88)m= 19.85		19.86	19.87	1 rest of 19.87	19.88	19.88	19.8		19.87	19.87	19.86		(88)
	1	I						10.00	10.07	10.07	10.00		(00)
Utilisation fa	<u> </u>	1	1	i <u> </u>	<u> </u>	1	T Ó			1		I	(00)
(89)m= 0.98	0.96	0.94	0.88	0.76	0.57	0.39	0.42	0.67	0.89	0.96	0.98		(89)
Mean intern	al temper	rature in	the rest	of dwelli	ing T2 (follow ste	eps 3 t	o 7 in Tab	le 9c)	-			
(90)m= 18.1	18.35	18.73	19.22	19.61	19.82	19.87	19.8		19.3	18.63	18.06		(90)
								1	fLA = Livir	ng area ÷ (4) =	0.26	(91)
Mean intern	al tempei	rature (fo	or the wh	ole dwe	lling) =	fLA × T1	+ (1 –	fLA) × T2					
(92)m= 18.51	18.73	19.09	19.54	19.9	20.11	20.16	20.1	6 20.05	19.61	18.99	18.47		(92)
Apply adjus	tment to t	he mear	interna	l temper	ature fr	om Table	4e, v	here appro	opriate	•			
(93)m= 18.36	18.58	18.94	19.39	19.75	19.96	20.01	20.0	1 19.9	19.46	18.84	18.32		(93)
8. Space he	ating req	uirement											
Set Ti to the			•		ned at s	tep 11 of	Table	9b, so tha	t Ti,m=((76)m an	d re-calo	culate	
the utilisatio	1	т <u>т</u>	<u> </u>	1	<u> </u>	1	<u> </u>			1	L _	l	
Jan	Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec		
Utilisation fa	0.95	1		0.76	0.50	0.4	0.44	0.69	0.00	0.05	0.07		(94)
(94)m= 0.97 Useful gains		0.93	0.87	0.76	0.58	0.4	0.44	0.68	0.88	0.95	0.97		(34)
(95)m= 536.68	1	, VV = (94 605.54	596.2	532.27	393.32	261.76	274.6	8 406.88	495.15	508.7	514.93		(95)
Monthly ave						1_00	1_, 1.(I	1		l	()
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss ra										I	<u> </u>	l	
	1	1		· · · · · · · · · · · · · · · · · · ·	,	<u> </u>	1 1,00		ř – – –	1	r		
(97)m= 1126.9	4 1094.45	992.57	827.43	633.7	417.75	265.96	280.7	3 453.65	697.76	928.47	1120.92		(97)

						Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
10a. F	Fuel cos	sts - indiv	vidual he	eating sy	stems:									-
Electric	city for li	ighting											315.22	(232)
Total e	lectricity	y for the	above, l	kWh/yea	ır			sum	of (230a).	(230g) =			75	(231)
boiler	with a f	an-assis	sted flue									45		(230e)
centra	al heatir	ig pump	:									30		(230c)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
Water	heating	fuel use	d										1661.08	
Space	heating	fuel use	ed, main	system	1								2449.1	
Annua	l totals										Wh/year		kWh/year	
(213)11-	107.02	140.05	102.00	133.03	131.0	110.00	109.97		I = Sum(2)		130.43	102.19	1661.08	(219)
	1 = (64)	m x 100) ÷ (217) 152.63)m 135.05	131.6	116.86	109.97	123.8	124.57	140.34	150.43	162.19		
		heating,			1									
(217)m=		89.59	89.45	89.13	88.53	87.3	87.3	87.3	87.3	89.02	89.49	89.7		(217)
Efficier		ater hea		120.01		102.02		100.00	100.10	121.00	101.02	1 10.10	87.3	(216)
Output	from w	ater hea 131.37	ter (calc 136.52	ulated a	bove) 116.51	102.02	96	108.08	108.75	124.93	134.62	145.48		
Water	heating	J												
				<u>. </u>	1			Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
•		01)] } x 1		• •	0	0	0	0	0	0	0	0		
Snace	a hoatin	a fual (s	econdar	·y), kWh/	month			TOTA	i (Kwii/yee		- 1 1,5,1012	-	2449.1	
	485.26	379.6	318.18	183.96	83.39	0	0	0 Tota		166.57	333.96 211) _{15.1012}	498.19	0440.4	(211)
(211)m		Í	<u>,,, ,</u>	100 ÷ (20	r í									(211)
	439.16	343.54	287.95	166.49	75.46	0	0	0	0	150.74	302.23	450.86		
Space		g require		calculate				5	I					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	∟ ar
	•			ementar		g system	ı, %						0	(208)
			•	ting syste					<i>,</i>				90.5	(206)
	•			main syst				(204) = (20		(203)] =			1	(204)
	•			econdar nain syst		mentary	•	(202) = 1 -	- (201) =				0	(201)
-	e heatir	-	t from o	aaandar		montory	ovetere						0	
9a. En	ergy rec	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space	e heatin	g require	ement in	n kWh/m²	²/year								35.51	(99)
								Tota	l per year	(kWh/year	·) = Sum(9	8)15,912 =	2216.43	(98)
(98)m=	439.16	343.54	287.95	166.49	75.46	0	0	0	0	150.74	302.23	450.86		
Space	e heatin	g require	ement fo	or each n	nonth, k	Wh/mont	th = 0.02	24 x [(97))m – (95)m] x (4	1)m			

Space heating - main system 1	(211)	x	3.48	x 0.01 =	85.23	(240)
Space heating - main system 2	(213)	x	0	x 0.01 =	0	(241)
Space heating - secondary	(215)	x	13.19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)		3.48	x 0.01 =	57.81	(247)
Pumps, fans and electric keep-hot	(231)		13.19	x 0.01 =	9.89	(249)
(if off-peak tariff, list each of (230a) to (23 Energy for lighting	80g) separately a (232)	as applicable an	d apply fuel price acc 13.19	ording to x 0.01 =	Table 12a 41.58	(250)
Additional standing charges (Table 12)					120	(251)
Appendix Q items: repeat lines (253) and	l (254) as neede	d				
Total energy cost	(245)(247) + (250)	(254) =			314.5	(255)
11a. SAP rating - individual heating system	tems					
Energy cost deflator (Table 12)					0.42	(256)
Energy cost factor (ECF)	[(255) x (256)] ÷ [(4)	+ 45.0] =			1.23	(257)
SAP rating (Section 12)					82.84	(258)
12a. CO2 emissions – Individual heating	g systems includ	ling micro-CHP				
	Ene kWh	rgy /year	Emission fa kg CO2/kWh		Emissions kg CO2/yea	r
Space heating (main system 1)	(211)	x	0.216	=	529.01	(261)
Space heating (secondary)	(215)	x	0.519	=	0	(263)
Water heating	(219)	x	0.216	=	358.79	(264)
Space and water heating	(261)	+ (262) + (263) + (2	64) =		887.8	(265)
Electricity for pumps, fans and electric ke	ep-hot (231)	x	0.519	=	38.93	(267)
Electricity for lighting	(232)	x	0.519	=	163.6	(268)
Total CO2, kg/year			sum of (265)(271) =		1090.32	(272)
CO2 emissions per m ²			(272) ÷ (4) =		17.47	(273)
El rating (section 14)					86	(274)
13a. Primary Energy						
	Ene kWh	rgy /year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211)	x	1.22	=	2987.9	(261)
Space heating (secondary)	(215)	x	3.07	=	0	(263)
Energy for water heating	(219)	x	1.22	=	2026.52	(264)
Space and water heating	(261)	+ (262) + (263) + (2	64) =		5014.42	(265)
Electricity for pumps, fans and electric ke	ep-hot (231)	x	3.07	=	230.25	(267)
Electricity for lighting	(232)	x	0	=	967.74	(268)
'Total Primary Energy			sum of (265)(271) =		6212.4	(272)

Primary energy kWh/m²/year

(272) ÷ (4) =

99.54 (273)