Regulations Compliance Report

Printed on 08 Nov	ember 2019 at 12:17	n, England assessed by Stroma FSA 7:25	AP 2012 program, Ve	rsion: 1.0.4.18	
Project Information	on:				
Assessed By:	Ross Boulton (ST	RO028068)	Building Type:	Flat	
Dwelling Details:	· · · · · · · · · · · · · · · · · · ·		0 71		
NEW DWELLING			Total Floor Area: 9	14 Fm^2	
Site Reference :	B2 Stg 4 Issue		Plot Reference:	B2A-105-07	
Address :	B2A-105-07, Flat	Гуре 2-17A, Wimbledon, London			
Client Details:					
Name:	Galliard Homes				
Address :					
This report cover	rs items included w	ithin the SAP calculations.			
•	ete report of regulat				
1a TER and DEF					
	ting system: Mains ga	as (c) Mains das (c)			
	mains gas (c), mains	.,			
	oxide Emission Rate	• • • • •	16.64 kg/m²		
•	Dioxide Emission Rat		10.81 kg/m ²		ОК
1b TFEE and DF			J. J.		
	rgy Efficiency (TFEE)	50.0 kWh/m ²		
-	nergy Efficiency (DFE		48.1 kWh/m ²		
5	- <u>-</u>	,			ОК
2 Fabric U-value	es				
Element		Average	Highest		
External	wall	0.15 (max. 0.30)	0.15 (max. 0.70)		ок
Floor		(no floor)	· · · · ·		
Roof		0.13 (max. 0.20)	0.13 (max. 0.35)		ок
Openings	6	1.35 (max. 2.00)	1.35 (max. 3.30)		ΟΚ
2a Thermal brid	ging				
Thermal	bridging calculated fr	om linear thermal transmittances fo	r each junction		
3 Air permeabili	ty				
Air permea	bility at 50 pascals		5.00 (design va	lue)	
Maximum	, i		10.0	,	OK
4 Heating efficie	nev				
Main Heati		Community booting cohomoo			
	ig system.	Community heating schemes - ma	ans yas		
Secondary	heating system:	None			
C C C C C C C C C C C C C C C C C C C					
5 Cylinder insul	ation				
Hot water S		No cylinder			
6 Controls					
Snace heat	ting controls	Charging system linked to use of	community beating		
Opace riedi		programmer and at least two roor			ок
Hot water o	controls:	No cylinder thermostat			
		No cylinder			

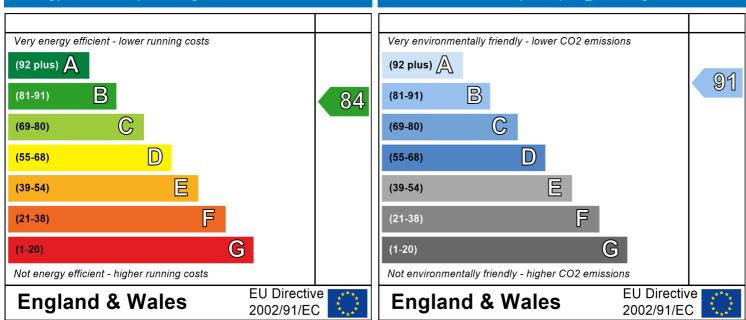
Regulations Compliance Report

7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100.0%	
Minimum	75.0%	OK
8 Mechanical ventilation		
Continuous extract system		
Specific fan power:	0.31	
Maximum	0.7	OK
9 Summertime temperature		
Overheating risk (Thames valley):	Slight	OK
Based on:		
Overshading:	Average or unknown	
Windows facing: South West	2.74m ²	
Windows facing: South West	1.59m ²	
Windows facing: South West	2.92m ²	
Windows facing: North East	2.74m²	
Windows facing: North East	1.59m²	
Windows facing: South West	13.23m ²	
Ventilation rate:	4.00	
Blinds/curtains:	Light-coloured curtain or	roller blind
	Closed 100% of daylight	hours

10 Key features

Community heating, heat from boilers – mains gas Photovoltaic array

Predicted Energy Assessment


B2A-105-07 Flat Type 2-17A Wimbledon London Dwelling type: Date of assessment: Produced by: Total floor area: Top floor Flat 01 December 2018 Ross Boulton 94.5 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Address:	2A-105-07	B2A-105-07, Flat Type 2	174 Wimblodon I	ondon		
Located in:		England	- I/A, WIIIDIEUUII, L	UNUUN		
Region:		Thames valley				
JPRN:		,				
Date of assessm	ent:	01 December 2018				
Date of certifica	te:	08 November 2019				
Assessment type	e:	New dwelling design stag	ge			
ransaction type	e:	New dwelling				
enure type:		Unknown				
Related party di		No related party				
Thermal Mass P		Indicative Value Low				
PCDF Version:	25 litres/person/d	451				
Property descriptio	n:					
Owelling type:		Flat				
Detachment: (ear Completed:		2018				
-loor Location:		Floor area:				
			St	orey height		
loor 0		94.5 m²		2.6 m		
				2.0 11		
Living area: Front of dwelling f	aces:	36.267 m ² (fraction 0.3 North	84)			
Opening types:						
Name:	Source:	Type:	Glazing:		Argon:	Frame:
5W_1.07_2.56 x 1	Manufacturer	Windows	low-E, $En = 0$		No	
SW_0.62_2.56 x 1	Manufacturer	Windows	low-E, En = 0		No	
SW_1.14_2.56 x 1	Manufacturer	Windows	low-E, En = 0		No	
NE_1.07_2.56 x 1 NE_0.62_2.56 x 1	Manufacturer Manufacturer	Windows Windows	low-E, En = 0 low-E, En = 0		No No	
SW_5.07_2.61 x 1	Manufacturer	Windows	low-E, En = 0		No	
Name:	Gap:	Frame Facto	v. a-value.	U-value:	Area:	No. of Opening
SW_1.07_2.56 x 1	16mm or more	0.8	0.5	1.35	2.74	1
W_0.62_2.56 x 1	16mm or more	0.8	0.5	1.35	1.59	1
W_1.14_2.56 x 1	16mm or more	0.8	0.5	1.35	2.92	1
IE_1.07_2.56 x 1	16mm or more	0.8	0.5	1.35	2.74	1
NE_0.62_2.56 x 1	16mm or more	0.8	0.5	1.35	1.59	1
W_5.07_2.61 x 1	16mm or more	0.8	0.5	1.35	13.23	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
5W_1.07_2.56 x 1		Wall	South West		1.07	2.56
SW_0.62_2.56 x 1		Wall	South West		0.62	2.56
SW_1.14_2.56 x 1		Wall	South West		1.14	2.56
NE_1.07_2.56 x 1		Wall	North East		1.07	2.56
NE_0.62_2.56 x 1		Wall	North East		0.62	2.56
W_5.07_2.61 x 1		Wall	South West		5.07	2.61
Overshading:		Average or unknown				
Opaque Elements:						
ype: xternal Elements	•	nings: Net area:	U-value:	Ru value:	Curtain	wall: Kappa:

SAP Input

Roof <u>Internal Elem</u> Party Elemen		0	94.5	0.13	0	N/A
Thermal bridg	<u>aes:</u>					
Thermal bridg	-				Y-Value = 0.1838	
	[Approved] [Approved] [Approved]	Length 9.59 0 30.82 9.921 7.29 2.865 2.865 8.595 2.865 0 17.211 0 24.388 0	Psi-valu 0.3 0.04 0.05 0.14 0.35 0.18 0 0.12 0.12 0.32 0.56 0 0.24 0.16	LUE E2 E3 E4 E7 E23 E16 E17 E18 E25 E20 E15 P3 P4 P7	Other lintels (including o Sill Jamb Party floor between dwe Balcony within or betwee Corner (normal) Corner (inverted internal Party wall between dwell Staggered party wall bet Exposed floor (normal) Flat roof with parapet Intermediate floor betwee Roof (insulation at ceiling Exposed floor (normal)	ellings (in blocks of flats) een dwellings, balcony support penetrates wall al area greater than external area) ellings etween dwellings reen dwellings (in blocks of flats)
		0	0.16	P1	Ground floor	
Ventilation: Pressure test:		Yes (As de	relaned)			
Ventilation:		Centralised Number of Ductwork: Approved I	d whole house f wet rooms: K	Kitchen + 3	ž	
Number of ch Number of op Number of fa Number of pa Number of sic Pressure test:	pen flues: ans: assive stacks: des sheltered:	0 0 0 2 5				
Main heating						
Main heating	system:	Heat sourc heat from Heat sourc heat from	ce: Community n boilers – mai	y CHP ains gas, hea y boilers ains gas, hea	at fraction 0.666, efficien at fraction 0.334, efficien emp, variable flow	
Main heating	Control:					
Main heating	Control:	Charging s thermostat Control coc	ts	to use of cor	mmunity heating, progra	rammer and at least two room
Secondary he	eating system:					
Secondary he Water heating	eating system: g:	None				
Water heating		Water code Fuel :heat	from boilers – ter cylinder			
Others:						
Electricity tari In Smoke Cor		Standard T Yes	ariff			

SAP Input

Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: No conservatory 100% Dense urban English No <u>Photovoltaic 1</u> Installed Peak power: 0.309 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South West No

Assess Zero Carbon Home:

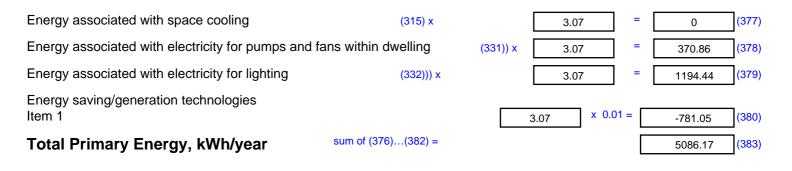
Assessor Name: Software Name:Ross BoultonStroma FSAP 2012Stroma Number: Software Version:STRO028068Software Name:Stroma FSAP 2012Software Version: Software Version:Version: 1.0.4.18Address:B2A-105-07, Flat Type 2-17A, Wimbledon, LondonAddress: Software Version:Version: 1.0.4.18Address:B2A-105-07, Flat Type 2-17A, Wimbledon, LondonAv. Height(m) 94.5Volume(m ⁹) (2a) =Volume(m ⁹) (245.7Ground floor94.5(1a) x2.6(2a) =245.7(3a) (3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)94.5(4)Volume(m ⁹) (2b)+(3n) =245.7(5)Develing volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =245.7(5)(5)Number of chinneysSecondary heatingothertotalm ³ per hour (6a)Number of open flues0+0=0x 40 =0(6a) (7a)Number of passive vents0+0=0x 10 =0(7a) (7b)Number of flueless gas fires0x 10 =0(7b) (7c)X 10 =0(7c) (7c)
Property Address: B2A-105-07Address :B2A-105-07, Flat Type 2-17A, Wimbledon, London1. Overall dwelling dimensions:Area(m ²)Av. Height(m)Volume(m ³)Ground floor 94.5 (1a) x 2.6 (2a) = 245.7 (3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 94.5 (4) 94.5 (4) 94.5 (4)Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$ 245.7 (5)2. Ventilation rate:main heating heating +0=0 $x 40 =$ 0Number of chimneys 0 + 0 + 0 = 0 $x 40 =$ 0 (6a)Number of open flues 0 + 0 + 0 = 0 $x 10 =$ 0 (7a)Number of passive vents 0 $x 10 =$ 0 (7b) 0 $x 40 =$ 0 (7c)
Address :B2A-105-07, Flat Type 2-17A, Wimbledon, London1. Overall dwelling dimensions:Area(m²)Av. Height(m)Volume(m³)Ground floor 94.5 $(1a) \times 2.6$ $(2a) = 245.7$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 94.5 (4) $(3a)+(3c)+(3d)+(3e)+(3n) = 245.7$ (5) Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245.7$ (5) 2. Ventilation rate:Number of chimneys 0 $+$ 0 $=$ 0 $x 40 =$ 0 $(6a)$ Number of open flues 0 $+$ 0 $=$ 0 $x 20 =$ 0 $(6b)$ Number of passive vents 0 $x 10 =$ 0 $(7a)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Area(m²)Av. Height(m)Volume(m³) Ground floor 94.5 $(1a) \times 2.6$ $(2a) = 245.7$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 94.5 (4) $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245.7$ (5) 2. Ventilation rate:Number of chimneyso thertotalmain heatingbecondary heatingo thertotalmain heating Number of chimneys 0 $+$ 0 $=$ 0 $x40 =$ 0 (6a)Number of open flues 0 $+$ 0 $=$ 0 $x40 =$ 0 (6b)Number of passive vents 0 $x 10 =$ 0 $(7a)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Area(m²)Av. Height(m)Volume(m³)Ground floor 94.5 $(1a) \times 2.6$ $(2a) = 245.7$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 94.5 (4) $(3a)+(3c)+(3d)+(3e)+(3n) = 245.7$ (5) Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245.7 (5) Number of chimneys 0 $+$ 0 e 0 $x 40 = 0$ $(6a)$ Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x 40 = 0$ $(6b)$ Number of intermittent fans 0 $x 10 = 0$ $(7a)$ Number of flueless gas fires 0 $x 40 = 0$ $(7c)$
Ground floor 94.5 $(1a) \times 2.6$ $(2a) = 245.7$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 94.5 (4) Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245.7$ (5) 2. Ventilation rate: $\mathbf{main heating}$ $\mathbf{secondary heating}$ \mathbf{other} \mathbf{total} $\mathbf{m^3 per hour}$ Number of chimneys 0 $+$ 0 $+$ 0 $=$ 0 $(40) =$ Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $(6a)$ Number of intermittent fans 0 $\times 10 =$ 0 $(7a)$ Number of flueless gas fires 0 $\times 40 =$ 0 $(7c)$
Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245.7 (5) 2. Ventilation rate: main heatingsecondary heatingothertotalm³ per hourNumber of chimneys 0 + 0 + 0 = 0 × 40 = 0 (6a)Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b)Number of intermittent fans 0 × 10 = 0 (7a)Number of passive vents 0 × 40 = 0 (7b)Number of flueless gas fires 0 × 40 = 0 (7c)
2. Ventilation rate: Number of chimneys 0 + 0 = 0 $x 40$ 0 (6a)Number of open flues 0 + 0 + 0 = 0 $x 20$ 0 (6b)Number of intermittent fans 0 + 0 = 0 $x 10$ 0 (7a)Number of passive vents 0 $x 10$ 0 $(7b)$ 0 $x 40$ 0 $(7c)$
main heatingsecondary heatingothertotal m^3 per hourNumber of chimneys 0 $+$ 0 $=$ 0 $\times 40 =$ 0 (6a)Number of open flues 0 $+$ 0 $=$ 0 $\times 20 =$ 0 (6b)Number of intermittent fans 0 $+$ 0 $=$ 0 $\times 10 =$ 0 (7a)Number of passive vents 0 $\times 10 =$ 0 (7b)Number of flueless gas fires 0 $\times 40 =$ 0 (7c)
Number of chimneys 0 + 0 + 0 = 0 $x 40 =$ 0 $(6a)$ Number of open flues 0 + 0 + 0 = 0 $x 20 =$ 0 $(6b)$ Number of intermittent fans 0 $x 10 =$ 0 $(7a)$ Number of passive vents 0 $x 10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Number of chimneys 0 $+$ 0 $+$ 0 $=$ 0 $x 40 =$ 0 $(6a)$ Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x 20 =$ 0 $(6b)$ Number of intermittent fans 0 $x 10 =$ 0 $(7a)$ Number of passive vents 0 $x 10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Number of intermittent fans 0 $x 10 =$ 0 $(7a)$ Number of passive vents 0 $x 10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Number of passive vents 0 $x 10 =$ 0 (7) Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$
Number of flueless gas fires $0 x 40 = 0 (7c)$
Air changes per hour
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ \div (5) = 0 (8)
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) \div (5) = 0 (8)
Number of storeys in the dwelling (ns)
Additional infiltration $[(9)-1]\times 0.1 = 0$ (10)
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)
If no draught lobby, enter 0.05, else enter 0 0 (13)
Percentage of windows and doors draught stripped 0 (14)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 5 (17)
If based on air permeability value, then $(18) = [(17) \div 20]+(8)$, otherwise $(18) = (16)$ 0.25 (18)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered 2 (19)
Number of sides sheltered 2 (19) Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85 (20)
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.21$ (21)
Infiltration rate modified for monthly wind speed
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monthly average wind speed from Table 7
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7
Wind Factor (22a)m = (22)m ÷ 4
(22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m	-	_			
	0.27	0.27	0.26	0.23	0.23	0.2	0.2	0.2	0.21	0.23	0.24	0.25		
		al ventila	•	rate for t	he appli	cable ca	se					1	0.5	(23a)
				endix N, (2	3b) = (23a	ı) × Fmv (e	equation (I	N5)) . othe	rwise (23b	o) = (23a)		l	0.5	(23b)
				iency in %						, , ,		l	0.5	(23c)
			-	-	-					2b)m + (23b) x [′	l 1 – (23c)	-	(200)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
	balance	d mecha	ı anical ve	ntilation	without	heat rec	L Coverv (N	и ЛV) (24b	m = (2)	1 2b)m + (j	1 23b)	II		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	use ex	ract ver	ntilation of	or positiv	re input v	ı ventilatio	n from o	utside					
,					•	•				.5 × (23b))			
(24c)m=	0.52	0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
,				ole hous m = (221		•				0.5]	•			
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.52	0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3 He	at losse	s and he	eat loss i	paramete	ər.				•	•	•	•		
ELEN		Gros		Openin		Net Ar	ea	U-valı	ue	AXU		k-value) Д	Xk
	ws Type	area	(m²)	m		A ,r		W/m2 -(1.35)		(W/	K)	kJ/m²∙ł	K k	J/K (27)
	ws Type					1.59		[1/(1.35)-		2.04				(27)
	ws Type						_	[1/(1.35)-						
						2.92				3.74				(27)
	ws Type					2.74		[1/(1.35)-		3.51				(27)
	ws Type T					1.59	_	[1/(1.35)-		2.04				(27)
	ws Type	9 0 				13.23		[1/(1.35)+	• 0.04] =	16.95	╡,			(27)
Walls		45.5	52	24.8	1	20.71	X	0.15	=	3.11			_	(29)
Roof		94.		0		94.5	×	0.13	=	12.28				(30)
		lements				140.0								(31)
				effective wi nternal wal			ated using	formula 1	/[(1/U-valı	ue)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K :	= S (A x	U)	,			(26)(30)) + (32) =				47.17	(33)
Heat c	apacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	1140.41	(34)
Therm	al mass	parame	ter (TMF	⁻ = Cm ÷	- TFA) ir	∩ kJ/m²K			Indica	ative Value	: Low		100	(35)
	-	sments wh ad of a de			constructi	ion are not	t known pi	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						25.74	(36)
	of therma		are not kn	own (36) =	= 0.05 x (3	1)			(33) +	- (36) =			72.91	(37)
			alculated	d monthly	/					$1 = 0.33 \times ($	25)m x (5)	l	12.31	(0,)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	42.24	41.81	41.38	40.54	40.54	40.54	40.54	40.54	40.54	40.54	40.54	40.54		(38)
Heat ti	ransfer o	coefficier	nt. W/K				ļ	I	(39)m	I = (37) + (10)	38)m		I	
(39)m=	115.15	r	114.29	113.45	113.45	113.45	113.45	113.45	113.45	113.45	113.45	113.45		
	FSAP 201	2 Version:	1.0.4.18	(SAP 9.92)		ww.stroma	.com	I		I Average =	Sum(39)1.	12 /12=	113.77 _{ag}	e 2 of 39)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	1.22	1.21	1.21	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
Numhe	er of day	s in mo	nth (Tab	le 1a)						Average =	Sum(40) ₁ .	.12 /12=	1.2	(40)
- turnov	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			1	1	1			!	1	1				
4. Wa	ter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	0(-0.0003	349 x (TI	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.		68		(42)
Reduce	the annua	al average	hot water		5% if the c	welling is	designed	(25 x N) to achieve		se target o	97 f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	-	-	-	ach month	r	r		r						
(44)m=	107.7	103.78	99.87	95.95	92.03	88.12	88.12	92.03	95.95	99.87	103.78 m(44) ₁₁₂ =	107.7	1174.9	(44)
Energy	content of	hot water	used - cal	culated m	onthly = 4.	190 x Vd,ı	m x nm x L	OTm / 3600					1174.9	(44)
(45)m=	159.71	139.69	144.14	125.67	120.58	104.05	96.42	110.64	111.97	130.49	142.43	154.67		
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot wate	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1540.48	(45)
(46)m=	23.96	20.95	21.62	18.85	18.09	15.61	14.46	16.6	16.79	19.57	21.37	23.2		(46)
	storage													
-							-	within sa	ame ves	sel		C		(47)
	-	-		ank in dw ar (this in	-			ı (47) ombi boil	ers) ente	r '0' in <i>(</i>	47)			
	storage		not wat	51 (ti 115 11		nstanta	10003 00							
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					C		(48)
Tempe	erature f	actor fro	m Table	2b								C		(49)
•••			-	e, kWh/ye				(48) x (49)) =		1	10		(50)
				cylinder com Tobl										(54)
		-	ee secti	rom Tabl on 4 3	ie z (kvv	n/iitre/ua	ay)				0.	02		(51)
		from Ta									1.	03		(52)
Tempe	erature f	actor fro	m Table	2b							0			(53)
Energy	/ lost fro	m water	⁻ storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	1.	03		(54)
Enter	(50) or ((54) in (5	55)								1.	03		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хH	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3)		(58)
	-	•	,			59)m =	(58) ÷ 36	65 × (41)	m					
(mo			r	r	r	r		ng and a	· ·	i	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi	ombi loss calculated for each month (61)m = (60) \div 365 × (41)m													
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	for ea	ach month	(62)m =	= 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	214.99	189.61	199.42	179.16	175.86	157.5	5 151.7	165.92	165.46	185.76	195.93	209.95		(62)
Solar DH	IW input	calculated	using Ap	pendix G o	r Appendix	H (neg	ative quantit	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add ac	dditiona	al lines if	FGHRS	S and/or	WWHRS	applie	es, see Ap	pendix (G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	214.99	189.61	199.42	179.16	175.86	157.5	5 151.7	165.92	165.46	185.76	195.93	209.95		
				-	-		-	Out	out from w	ater heate	r (annual)₁	12	2191.32	(64)
Heat g	ains fro	m water	heating	ı, kWh/m	onth 0.2	5 ´ [0.8	35 × (45)m	n + (61)n	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m=	97.33	86.39	92.15	84.58	84.32	77.39	76.28	81.01	80.02	87.61	90.15	95.65		(65)
inclu	de (57)	m in calo	culation	of (65)m	only if c	ylinde	r is in the	dwelling	or hot w	ater is fi	rom com	munity h	leating	
5. Int	ernal a	ains (see	Table	5 and 5a):	-		-				•	-	
		ns (Table												
metabl	Jan	Feb	Mar	Apr	May	Jur	ı Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	160.95	160.95	160.95	160.95	160.95	160.9		160.95	160.95	160.95	160.95	160.95		(66)
· ·	n dains	(calcula	L ted in A		1	on I 9	 or L9a), a	lso see	1				1	
(67)m=	55.08	48.92	39.78	30.12	22.51	19.01		26.7	35.83	45.5	53.1	56.61]	(67)
		1					L13 or L1						I	
Appilai (68)m=	368.83	<u>,</u>	363.01	342.48	316.56	292.2		272.1	281.75	302.28	328.2	352.56	1	(68)
											520.2	352.50	l	(00)
		<u> </u>		53.78	· · ·		5 or L15a	. <u> </u>	1		50.70	50.70	1	(69)
(69)m=	53.78	53.78	53.78		53.78	53.78	3 53.78	53.78	53.78	53.78	53.78	53.78		(09)
		ins gains	i	1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	(70)
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
1	<u> </u>	vaporatio	- <u> </u>	T	, ``	,					r	r	1	
(71)m=	-107.3	-107.3	-107.3	-107.3	-107.3	-107.	3 -107.3	-107.3	-107.3	-107.3	-107.3	-107.3		(71)
Water	heating	gains (T	able 5)											
(72)m=	130.82	128.55	123.86	117.47	113.33	107.4	9 102.53	108.89	111.14	117.75	125.21	128.56		(72)
Total i	nterna	l gains =		-		(66)m + (67)n	n + (68)m ·	+ (69)m +	(70)m + (7	'1)m + (72)	m		
(73)m=	662.15	657.56	634.08	597.5	559.83	526.1	3 506.42	515.11	536.15	572.95	613.94	645.15		(73)
6. Sol	ar gain	s:												
Solar g	ains are	calculated	using sola	ar flux from	Table 6a a		ociated equa	ations to co	onvert to th	ne applicat		ion.		
Orienta		Access F	actor	Area	l		lux	т	g_	-	FF		Gains	
		Table 6d		m²		ا 	able 6a	ا 	able 6b		able 6c		(VV)	-
Northea		0.77	×	2.	74	x	11.28	x	0.5	x	0.8	=	8.57	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	1.	59	x	11.28	x	0.5	x	0.8	=	4.97	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	2.	74	x	22.97	x	0.5	x	0.8	=	17.44	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	1.	59	x	22.97	x	0.5	x	0.8	=	10.12	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	2.	74	x	41.38	x	0.5	x	0.8	=	31.43	(75)

Northeast 0.9x	0.77] x	1.59	×	41.38	×	0.5	x	0.8] =	18.24	(75)
Northeast 0.9x	0.77) ^] x	2.74	x	67.96	x	0.5	x	0.8] =	51.61	(75)
Northeast 0.9x	0.77] ^] x	1.59	x	67.96	^ x	0.5	x	0.8] =	29.95	(75)
Northeast 0.9x	0.77] ×	2.74	x	91.35	x	0.5	x	0.8]] =	69.38	(75)
Northeast 0.9x	0.77	」 】 ×	1.59	x	91.35	 x	0.5	x	0.8]] _	40.26	(75)
Northeast 0.9x	0.77	」 】 x	2.74	x	97.38	x	0.5	x	0.8	 =	73.97	(75)
Northeast 0.9x	0.77] x	1.59	x	97.38	x	0.5	x	0.8	=	42.92	(75)
Northeast 0.9x	0.77] x	2.74	x	91.1	x	0.5	x	0.8	=	69.19	(75)
Northeast 0.9x	0.77	x	1.59	x	91.1	x	0.5	x	0.8	=	40.15	(75)
Northeast 0.9x	0.77	x	2.74	x	72.63	x	0.5	x	0.8	=	55.16	(75)
Northeast 0.9x	0.77	x	1.59	x	72.63	x	0.5	x	0.8] =	32.01	(75)
Northeast 0.9x	0.77	x	2.74	x	50.42	x	0.5	x	0.8	=	38.3	(75)
Northeast 0.9x	0.77	x	1.59	x	50.42	x	0.5	x	0.8] =	22.22	(75)
Northeast 0.9x	0.77	x	2.74	x	28.07	x	0.5	x	0.8	=	21.32	(75)
Northeast 0.9x	0.77	x	1.59	×	28.07	x	0.5	x	0.8] =	12.37	(75)
Northeast 0.9x	0.77	x	2.74	×	14.2	x	0.5	x	0.8	=	10.78	(75)
Northeast 0.9x	0.77	x	1.59	x	14.2	x	0.5	x	0.8	=	6.26	(75)
Northeast 0.9x	0.77	x	2.74	x	9.21	x	0.5	x	0.8] =	7	(75)
Northeast 0.9x	0.77	x	1.59	x	9.21	x	0.5	x	0.8	=	4.06	(75)
Southwest _{0.9x}	0.77	x	2.74	x	36.79		0.5	x	0.8	=	27.95	(79)
Southwest _{0.9x}	0.77	x	1.59	x	36.79		0.5	x	0.8	=	16.22	(79)
Southwest _{0.9x}	0.77	x	2.92	x	36.79		0.5	x	0.8	=	29.78	(79)
Southwest _{0.9x}	0.54	x	13.23	x	36.79		0.5	x	0.8	=	94.63	(79)
Southwest _{0.9x}	0.77	x	2.74	x	62.67		0.5	x	0.8	=	47.6	(79)
Southwest _{0.9x}	0.77	x	1.59	x	62.67		0.5	x	0.8	=	27.62	(79)
Southwest _{0.9x}	0.77	x	2.92	x	62.67		0.5	x	0.8	=	50.73	(79)
Southwest _{0.9x}	0.54	x	13.23	x	62.67		0.5	x	0.8	=	161.19	(79)
Southwest _{0.9x}	0.77	x	2.74	x	85.75		0.5	x	0.8	=	65.13	(79)
Southwest _{0.9x}	0.77	x	1.59	×	85.75		0.5	x	0.8	=	37.8	(79)
Southwest _{0.9x}	0.77	×	2.92	x	85.75		0.5	x	0.8	=	69.41	(79)
Southwest _{0.9x}	0.54	x	13.23	x	85.75		0.5	x	0.8	=	220.55	(79)
Southwest _{0.9x}	0.77	×	2.74	x	106.25		0.5	x	0.8	=	80.7	(79)
Southwest _{0.9x}	0.77	x	1.59	x	106.25		0.5	x	0.8	=	46.83	(79)
Southwest _{0.9x}	0.77	×	2.92	x	106.25		0.5	x	0.8	=	86	(79)
Southwest _{0.9x}	0.54	x	13.23	x	106.25		0.5	x	0.8	=	273.27	(79)
Southwest _{0.9x}	0.77	×	2.74	×	119.01		0.5	x	0.8	=	90.39	(79)
Southwest _{0.9x}	0.77	×	1.59	×	119.01		0.5	x	0.8	=	52.45	(79)
Southwest _{0.9x}	0.77	×	2.92	×	119.01		0.5	x	0.8	=	96.33	(79)
Southwest _{0.9x}	0.54	×	13.23	×	119.01		0.5	x	0.8	=	306.08	(79)
Southwest _{0.9x}	0.77	×	2.74	x	118.15		0.5	x	0.8	=	89.74	(79)
Southwest _{0.9x}	0.77	×	1.59	X	118.15	J	0.5	x	0.8	=	52.07	(79)


Southwoote o											7			1		
Southwest _{0.9x}	0.77	×	2.9	2	X	<u>1</u>	18.15			0.5		0.8		=	95.63	(79)
Southwest _{0.9x}	0.54	x	13.	23	X	1	18.15			0.5	×	0.8		=	303.87	(79)
Southwest _{0.9x}	0.77	x	2.7	4	X	1	13.91			0.5	×	0.8		=	86.52	(79)
Southwest _{0.9x}	0.77	×	1.5	9	X	1	13.91			0.5	×	0.8		=	50.21	(79)
Southwest _{0.9x}	0.77	×	2.9	2	x	1	13.91			0.5	×	0.8		=	92.2	(79)
Southwest _{0.9x}	0.54	x	13.	23	x	1	13.91			0.5	×	0.8		=	292.96	(79)
Southwest0.9x	0.77	x	2.7	4	x	10	04.39			0.5	x	0.8		=	79.29	(79)
Southwest _{0.9x}	0.77	x	1.5	9	x	10	04.39			0.5	×	0.8		=	46.01	(79)
Southwest _{0.9x}	0.77	x	2.9	2	x	10	04.39			0.5	×	0.8		=	84.5	(79)
Southwest0.9x	0.54	x	13.	23	x	10	04.39			0.5	x	0.8		=	268.48	(79)
Southwest _{0.9x}	0.77	x	2.7	4	x	9	2.85			0.5	×	0.8		=	70.52	(79)
Southwest _{0.9x}	0.77	x	1.5	9	x	9	2.85			0.5	×	0.8		=	40.92	(79)
Southwest _{0.9x}	0.77	x	2.9	2	x	9	2.85			0.5	x	0.8		=	75.16	(79)
Southwest _{0.9x}	0.54	x	13.	23	x	9	2.85			0.5	x	0.8		=	238.81	(79)
Southwest _{0.9x}	0.77	x	2.7	4	x	6	9.27			0.5	x	0.8		=	52.61	(79)
Southwest _{0.9x}	0.77	x	1.5	9	x	6	9.27			0.5	×	0.8		=	30.53	(79)
Southwest _{0.9x}	0.77	x	2.9	2	x	6	9.27			0.5	×	0.8		=	56.07	(79)
Southwest _{0.9x}	0.54	x	13.	23	x	6	9.27			0.5	×	0.8		=	178.15	(79)
Southwest _{0.9x}	0.77	x	2.7	4	x	4	4.07			0.5	×	0.8		=	33.47	(79)
Southwest _{0.9x}	0.77	x	1.5	9	x	4	4.07			0.5	×	0.8		=	19.42	(79)
Southwest _{0.9x}	0.77	x	2.9	2	x	4	4.07			0.5	×	0.8		=	35.67	(79)
Southwest _{0.9x}	0.54	x	13.	23	x	4	4.07			0.5	۲ × آ	0.8		=	113.35	(79)
Southwest _{0.9x}	0.77	x	2.7	4	x	3	1.49			0.5	۲ × آ	0.8		=	23.92	(79)
Southwest _{0.9x}	0.77	×	1.5	9	x	3	1.49			0.5	۲ × آ	0.8		=	13.88	(79)
Southwest _{0.9x}	0.77	x	2.9	2	x	3	1.49			0.5	۲ × آ	0.8		=	25.49	(79)
Southwest _{0.9x}	0.54	x	13.	23	x	3	1.49			0.5	۲ × ۲	0.8		=	80.98	(79)
L																
Solar gains in	watts, ca	lculated	l for eacl	n month	ו			(83)m	ı = Sı	um(74)m	.(82)m					
(83)m= 182.12	314.71	442.55	568.37	654.9	-	58.21	631.23	565	.45	485.93	351.0	5 218.95	155.3	32		(83)
Total gains – i	nternal ar	nd solar	(84)m =	: (73)m	+ (8	83)m	, watts			•		•				
(84)m= 844.27	972.27	1076.63	1165.87	1214.73	11	84.33	1137.66	1080).56	1022.08	924	832.89	800.4	48		(84)
7. Mean inter	nal tempe	erature	(heating	seasor	ר)					-		•	-			
Temperature			, J		<i>.</i>	area	from Tab	ole 9.	. Th	1 (°C)					21	(85)
Utilisation fac	•	0.			Ŭ			,		~ /						
Jan	Feb	Mar	Apr	May	Ť	Jun	Jul	A	ug	Sep	Oct	Nov	De	C		
(86)m= 0.93	0.9	0.85	0.77	0.67	-	0.53	0.41	0.4	<u> </u>	0.62	0.8	0.9	0.93			(86)
Mean interna	L tompore	turo in		00 T1 /f		w ete	no 2 to 7	[7 in T								
(87)m= 18.89	19.19	19.62	20.13	20.54		20.82	20.93	20.9		20.72	20.18	19.46	18.8	5		(87)
	II										20.10	10.10	10.0	0		()
	<u> </u>	• •			-					<u> </u>	10.00	10.00	40.0	2		(99)
(88)m= 19.91	19.91	19.91	19.92	19.92	_	9.92	19.92	19.9	92	19.92	19.92	19.92	19.9	2		(88)
Utilisation fac	<u> </u>				<u> </u>			<u> </u>	i	i						
(89)m= 0.92	0.88	0.83	0.74	0.62	(0.46	0.32	0.3	85	0.55	0.76	0.88	0.92	2		(89)

Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 3	7 in Tabl	le 9c)				
(90)m=	17.13	17.57	18.18	18.87	19.42	19.76	19.88	19.86	19.65	18.96	17.96	17.08		(90)
								•	f	fLA = Livin	ig area ÷ (4	4) =	0.38	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	17.81	18.19	18.73	19.35	19.85	20.17	20.28	20.27	20.06	19.43	18.53	17.76		(92)
Apply	adjustn	nent to t	he mear	n interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	17.81	18.19	18.73	19.35	19.85	20.17	20.28	20.27	20.06	19.43	18.53	17.76		(93)
			uirement											
				mperatui using Ta		ned at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
line ui	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm		may	- our	- oui	7.03	000			200		
(94)m=	0.89	0.85	0.8	0.72	0.61	0.48	0.35	0.38	0.56	0.75	0.85	0.9		(94)
Usefu	I gains,	hmGm	, W = (94	4)m x (84	4)m			•						
(95)m=	750.59	830.08	864.53	843.86	746.76	564.66	396.44	411.23	572.14	689.39	710.81	719.51		(95)
Montl	nly aver	age exte	ernal tem	perature	e from Ta	able 8						-		
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			1			1	1	x [(93)m	1				1	
(97)m=	1555.51	1524.69	1397.94		924.99	631.42	417.75	438.7	676.37	1001.81	1296.93	1538.03		(97)
•		<u> </u>	1	1		1	1	24 x [(97]	Í	í - ·	r í	000.00		
(98)m=	598.86	466.78	396.86	246.28	132.61	0	0	0	0	232.44	422.01	608.98	2404.0	
					.,			Tota	ll per year	(kwn/yea	r) = Sum(9	8)15,912 =	3104.8	(98)
Spac	e heatin	g require	ement in	kWh/m ²	/year								32.86	(99)
9b. En	ergy rec	quiremer	nts – Coi	nmunity	heating	scheme	•							
•		•				-		ting prov	•		unity scł	neme.	0	(301)
	•				••		Ū	(Table 1	1) U II N	one			0	
Fractic	on of spa	ace heat	from co	mmunity	system	1 – (30′	1) =						1	(302)
	-									up to four	other heat	sources; ti	he latter	
			s, geotneri Commun		aste neat i	rom powei	r stations.	See Appel	naix C.				0.67	(303a)
				m heat s	ource 2								0.33	(303b)
				m Comn						(2	02) x (303	(a) -		(304a)
		•					. 0						0.67	<u> </u>
		•		m comm							02) x (303	D) =	0.33	(304b)
						,		unity hea	ating sys	tem			1	(305)
Distribution loss factor (Table 12c) for community heating system											1.05	(306)		
-	heating	-										I	kWh/year	¬
		-	requiren										3104.8	
•			munity C						(98) x (30	04a) x (30	5) x (306) :	=	2171.19	(307a)
Space	heat fro	m heat	source 2	2					(98) x (30	04b) x (30	5) x (306)	=	1088.85	(307b)
Efficie	Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)											0	(308	

Space heating requirement from second	lary/supplementary system	(98) x (301) x 100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2191.32	7
If DHW from community scheme: Water heat from Community CHP		(64) x (303a) x (305) x (306) =	1532.39	(310a)
Water heat from heat source 2		(64) x (303b) x (305) x (306) =	768.49	(310b)
Electricity used for heat distribution	0.	01 × [(307a)(307e) + (310a)(310e)] =	55.61	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling	system, if not enter 0)	= (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dw mechanical ventilation - balanced, extra		le	120.8	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year		=(330a) + (330b) + (330g) =	120.8	(331)
Energy for lighting (calculated in Append	dix L)		389.07	(332)
Electricity generated by PVs (Appendix	M) (negative quantity)		-254.41	(333)
Electricity generated by wind turbine (Ap	opendix M) (negative quantity)		0	(334)
10b. Fuel costs – Community heating s	scheme			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year	
Space heating from CHP	(307a) x	3.35 × 0.01 =	72.73	(340a)
Space heating from heat source 2	(307b) x	4.79 × 0.01 =	52.16	(340b)
Water heating from CHP	(310a) x	3.35 × 0.01 =	51.33	(342a)
Water heating from heat source 2	(310b) x	4.79 × 0.01 =	36.81	(342b)
Pumps and fans	(331)	Fuel Price 0 × 0.01 =	21.21	(349)
Energy for lighting	(332)	0 x 0.01 =	68.32	(350)
Additional standing charges (Table 12)			88	(351)
Energy saving/generation technologies Total energy cost	= (340a)(342e) + (345)(354) =		390.57	(355)
11b. SAP rating - Community heating s	scheme			
Energy cost deflator (Table 12)			0.42	(356)
Energy cost factor (ECF)	[(355) x (356)] ÷ [(4) + 45.0] =		1 13	(357)

Energy cost denator (Table 12)		0.42	(356)
Energy cost factor (ECF)	[(355) x (356)] ÷ [(4) + 45.0] =	1.13	(357)
SAP rating (section12)		84.21	(358)
12b. CO2 Emissions – Communit	y heating scheme		
Electrical efficiency of CHP unit		32	(361)
Heat efficiency of CHP unit		50.4	(362)

		Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
Space heating from CHP)	(307a) × 100 ÷ (362) =	4307.91 ×	0.22	930.51	(363)
less credit emissions for electricity	–(307a) × (361) ÷ (362) =	1378.53 ×	0.52	-715.46	(364)
Water heated by CHP	(310a) × 100 ÷ (362) =	3040.45 ×	0.22	656.74	(365)
less credit emissions for electricity	–(310a) × (361) ÷ (362) =	972.94 ×	0.52	-504.96	(366)
Efficiency of heat source 2 (%)	If there is CHP	using two fuels repeat (363) to	(366) for the second fu	el 95	(367b)
CO2 associated with heat source 2	[(30]	7b)+(310b)] x 100 ÷ (367b) x	0.22	= 422.3	(368)
Electrical energy for heat distributio	n	[(313) x	0.52	= 28.86	(372)
Total CO2 associated with commun	nity systems	(363)(366) + (368)(37	2)	= 817.99	(373)
CO2 associated with space heating	(secondary)	(309) x	0	= 0	(374)
CO2 associated with water from im	mersion heater or instant	aneous heater (312) x	0.22	= 0	(375)
Total CO2 associated with space a	nd water heating	(373) + (374) + (375) =		817.99	(376)
CO2 associated with electricity for p	oumps and fans within dw	velling (331)) x	0.52	= 62.7	(378)
CO2 associated with electricity for I	ighting	(332))) x	0.52	= 201.93	(379)
Energy saving/generation technolog	gies (333) to (334) as app	blicable	0.52 × 0.01 =	-132.04	(380)
Total CO2, kg/year	sum of (376)(382) =		0.32	950.58](000)](383)
Dwelling CO2 Emission Rat				10.06	(384)
El rating (section 14)				90.87	(385)
13b. Primary Energy – Community	heating scheme				
Electrical efficiency of CHP unit				32	(361)
Heat efficiency of CHP unit				50.4	(362)
		Energy kWh/year	Primary factor	P.Energy kWh/year	
Space heating from CHP)	(307a) × 100 ÷ (362) =	4307.91 ×	1.22	5255.65	(363)
less credit emissions for electricity	–(307a) × (361) ÷ (362) =	1378.53 ×	3.07	-4232.09	(364)
Water heated by CHP	(310a) × 100 ÷ (362) =	3040.45 ×	1.22	3709.35	(365)
less credit emissions for electricity	–(310a) × (361) ÷ (362) =	972.94 ×	3.07	-2986.94	(366)
Efficiency of heat source 2 (%)	If there is CHP	using two fuels repeat (363) to	(366) for the second fu	el 95	(367b)
Energy associated with heat source	e 2 [(30]	7b)+(310b)] x 100 ÷ (367b) x	1.22	= 2385.23	(368)
Electrical energy for heat distributio	n	[(313) x		= 170.72	(372)
Total Energy associated with comm	nunity systems	(363)(366) + (368)(37	2)	= 4301.92	(373)
if it is negative set (373) to zero (unless specified otherwis	e, see C7 in Appendix (C)	4301.92	(373)
Energy associated with space heat	ing (secondary)	(309) x	0	= 0	(374)
Energy associated with water from	immersion heater or insta	antaneous heater(312) x	1.22	= 0	(375)
Total Energy associated with space	e and water heating	(373) + (374) + (375) =		4301.92	(376)

			User D	etails:						
Assessor Name:	Ross Boulton			Stroma	a Num	ber:		STRO	028068	
Software Name:	Stroma FSAP	2012		Softwa	are Ver	sion:		Versio	n: 1.0.4.18	
		Р	roperty /	Address:	B2A-10	5-07				
Address :	B2A-105-07, F	lat Type 2-17	A, Wimb	ledon, L	ondon					
1. Overall dwelling dimen	sions:									
Ground floor				a(m²) 94.5	(1a) x	Av. Hei	i ght(m) 6	(2a) =	Volume(m³) 245.7	(3a)
Total floor area TFA = (1a))+(1b)+(1c)+(1d))+(1e)+(1n	I) g	94.5	(4)					
Dwelling volume			L		(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	245.7	(5)
2. Ventilation rate:				_						
	main heating	secondar heating	У	other		total			m ³ per hour	
Number of chimneys	0	+ 0	+	0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+ 0	- + [0	ī = Ē	0	x 2	20 =	0	(6b)
Number of intermittent fan	s					3	x 1	10 =	30	(7a)
Number of passive vents					Γ	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	anges per ho	_ ur
Infiltration due to chimneys	s flues and fans	- (6a) + (6b) + (7)	a)+(7b)+(7	7c) =	Г					-
If a pressurisation test has be					continue fro	30 om (9) to (÷ (5) =	0.12	(8)
Number of storeys in the	e dwelling (ns)								0	(9)
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0.2	5 for steel or tim	nber frame or	0.35 for	masonr	y constr	uction			0	(11)
if both types of wall are pre deducting areas of opening			the greate	er wall area	a (after					
If suspended wooden flo			1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente	, (,	,	,,					0	(13)
Percentage of windows	and doors draug	ght stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value, q	50, expressed in	n cubic metre	s per ho	ur per so	quare me	etre of e	nvelope	area	5	(17)
If based on air permeabilit	y value, then (18	$(17) \div 20 + (8)$	3), otherwi	se (18) = (16)				0.37	(18)
Air permeability value applies		est has been don	e or a deg	iree air pei	rmeability i	is being us	sed			-
Number of sides sheltered Shelter factor				(20) = 1 - [0.075 x (1	9)] =			2	(19)
Infiltration rate incorporatir	a shelter factor			(21) = (18)		•/]		-	0.85	(20)
Infiltration rate modified for	0			(21) = (10)	/ x (2 0) -				0.32	(21)
		May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	· · ·	- · ·	2.01		207	000			I	
r	- I I I	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
									l	
Wind Factor (22a)m = (22)	- I - I	00 007	0.05	0.00		4.00	4.40	4.40	l	
(22a)m= 1.27 1.25 1.	23 1.1 1	.08 0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m	_		_		
~ ' '	0.4	0.4	0.39	0.35	0.34	0.3	0.3	0.29	0.32	0.34	0.36	0.37		
		al ventila	change i	rate for t	he appli	cable ca	se						0	(23a)
			using Appe	endix N. (2	3b) = (23a) × Fmv (e	equation (I	N5)) . othe	wise (23b) = (23a)			0	(23b)
			overy: effici		, ,	, ,				, (,			0	(23c)
			-	-	-					2h)m + (23b) × [1	l – (23c)		(230)
(24a)m=	r			0	0	0		0	0			1 - (230)	÷ 100]	(24a)
		-	anical ve	-	without	heat rec		1 /\/) (24h	1 - (22)	<u> </u> 2b)m + (23h)			
(24b)m=	0			0	0				0		0	0		(24b)
	whole h	-	tract ven	-	_		<u>entilatio</u>	n from c	-		-			
,			(23b), t		•	•				.5 × (23b))			
(24c)m=	r í í	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input	ventilatio	on from I	oft	1				
,	if (22b)n	n = 1, th	en (24d)	m = (22	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]				
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(25)
3. He	at losse	s and he	eat loss p	paramete	er:									
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	ΑXU		k-value	, Α	Xk
		area	(m²)	ŕ	2	A ,r	n²	W/m2	K	(W/	K)	kJ/m²∙ł	K k	J/K
Windo	ws Type	e 1				2.61	x1	/[1/(1.4)+	0.04] =	3.46				(27)
Windo	ws Type	92				1.51	x1	/[1/(1.4)+	0.04] =	2				(27)
Windo	ws Type	93				2.78	x1	/[1/(1.4)+	0.04] =	3.69				(27)
Windo	ws Type	9 4				2.61	x1	/[1/(1.4)+	0.04] =	3.46				(27)
Windo	ws Type	e 5				1.51	x1	/[1/(1.4)+	0.04] =	2				(27)
Windo	ws Type	e 6				12.6	x1	/[1/(1.4)+	0.04] =	16.7				(27)
Walls		45.5	52	23.6	2	21.9	×	0.18		3.94			┐	(29)
Roof		94.	5	0		94.5	×	0.13		12.28			\dashv	(30)
Total a	area of e	lements				140.0	2		I	-	L			(31)
				ffective wi	ndow U-va			formula 1	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	3.2	
			sides of in				-			, <u>-</u>	•			
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				47.54	(33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	1157.07	(34)
Therm	al mass	parame	ter (TMF	P = Cm ÷	- TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	•		ere the de tailed calcu		constructi	ion are noi	t known pr	ecisely the	indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix I	<						15.97	(36)
			are not kn	own (36) =	= 0.05 x (3	1)								_
	abric he									(36) =			63.51	(37)
Ventila		1	alculated	monthl							25)m x (5)	_	I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	47.13	46.88	46.63	45.45	45.23	44.2	44.2	44.01	44.6	45.23	45.67	46.14		(38)
Heat ti	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (38)m		I	
(39)m=	110.64	110.39	110.13	108.96	108.74	107.71	107.71	107.52	108.1	108.74	109.18	109.65		
Stroma	FSAP 201	2 Version:	1.0.4.18 (SAP 9.92)	- http://ww	vw.stroma	.com		,	Average =	Sum(39)1.	12 /12=	108.945 _{ag}	<u>e 2 of 89)</u>

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.17	1.17	1.17	1.15	1.15	1.14	1.14	1.14	1.14	1.15	1.16	1.16		
Numbe	ar of day	/s in mo	nth (Tab	le 12)				1	,	Average =	Sum(40)1	.12 /12=	1.15	(40)
T UTTE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
					1	1		I						
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				(1 - exp	(-0.0003	349 x (TF	FA -13.9	9)2)] + 0.0	0013 x (⁻	TFA -13.	<u>2.</u> 9)	68		(42)
Reduce	the annua	al average	hot water		5% if the c	welling is	designed	(25 x N) to achieve		se target o	97. f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	r day for e	ach month			Table 1c x							
(44)m=	107.7	103.78	99.87	95.95	92.03	88.12	88.12	92.03	95.95	99.87	103.78	107.7		
											m(44) ₁₁₂ =		1174.9	(44)
Energy o	content of	hot water	used - ca	lculated m	onthly = 4.	190 x Vd,r	m x nm x L	DTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	159.71	139.69	144.14	125.67	120.58	104.05	96.42	110.64	111.97	130.49	142.43	154.67		_
lf instant	taneous w	vater heati	ng at poin	t of use (no	o hot wate	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1540.48	(45)
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
Water	storage	loss:		<u> </u>	I	I		1	ļ	ļ				
Storag	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
		-		ank in dw	-			. ,			(-)			
	vise if no storage		hot wate	er (this ir	ICLUDES I	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
	•		eclared I	oss facto	or is kno	wn (kWł	n/day):				()		(48)
		actor fro				,	,					с Э		(49)
•				e, kWh/ye	ear			(48) x (49)) =)		(50)
			•	cylinder		or is not	known:							
		-		rom Tabl	le 2 (kW	h/litre/da	ay)				(C		(51)
	•	eating s from Ta		on 4.3								2		(52)
		actor fro		2b))		(52)
•				e, kWh/ye	ear			(47) x (51)) x (52) x (53) =)		(54)
		(54) in (5	-	,, y						,))		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – ((5 [H11)] ÷ (5	50), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3						()		(58)
	-	•				59)m = ((58) ÷ 30	65 × (41)	m					
(mod	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi	loss ca	lculated	for eac	h mon	h (61)m =	(60	0) ÷ 36	65 × (41)	m						
(61)m=	0	0	0	0	0		0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water	neating	calculate	d fo	or eacl	h month	(62)m	= 0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	135.76	118.73	122.52	106.8	102.49	8	88.45	81.96	94.05	95.17	110.91	121.07	131.47]	(62)
Solar Dł	-IW input	calculated	using Ap	pendix (or Appendi	хH	(negati	ve quantity) (enter	0' if no sola	r contribu	tion to wate	er heating)	-	
(add a	dditiona	al lines if	FGHR	S and/o	or WWHR	Sa	pplies	, see Ap	pendix	G)				_	
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter												
(64)m=	135.76	118.73	122.52	106.8	102.49	8	88.45	81.96	94.05	95.17	110.91	121.07	131.47		_
									Ou	tput from w	ater heate	er (annual)	112	1309.4	(64)
Heat g	ains fro	m water	heating	g, kWh	month 0.2	25 ´	[0.85	× (45)m	+ (61)	m] + 0.8 x	x [(46)m	n + (57)m	+ (59)m	1]	
(65)m=	33.94	29.68	30.63	26.7	25.62		22.11	20.49	23.51	23.79	27.73	30.27	32.87]	(65)
inclu	ide (57)	m in calo	culation	of (65)m only if	cyli	nder i	s in the c	dwelling	, g or hot w	vater is f	rom com	Imunity ł	- neating	
5. Int	ernal g	ains (see	e Table	5 and	5a):										
		ns (Table													
metab	Jan	Feb	Mar		r May	Т	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m=	134.12	134.12	134.12	_	-	1	34.12	134.12	134.12		134.12		134.12		(66)
Liahtin	a aains	(calcula	ted in A		ix L, equa	tior	ר L9 סו	r L9a). a	lso see	Table 5	1	1		1	
(67)m=	22.03	19.57	15.91	12.0		T	7.6	8.21	10.68	14.33	18.2	21.24	22.64]	(67)
		ins (calc			endix L, eo	_L nua	tion L			i o see Ta	l ble 5		ļ	J	
(68)m=	247.12	249.68	243.22				95.78	184.87	182.31	188.77	202.53	219.89	236.21	1	(68)
					lix L, equa								200121	1	. ,
(69)m=	36.41	36.41	36.41	36.4		-	36.41	36.41	, aiso s 36.41	36.41	36.41	36.41	36.41	1	(69)
					1 30.41	<u> </u>	50.41	00.41	50.41	30.41	00.41	00.41	30.41	1	(00)
•		ns gains	r`	<u> </u>		-	0		0					1	(70)
(70)m=		0	0	0			0	0	0	0	0	0	0	J	(70)
	<u> </u>	<u> </u>	<u> </u>		alues) (Ta	-	,	107.0				1 107 0		1	(74)
(71)m=			-107.3		3 -107.3	-	107.3	-107.3	-107.3	-107.3	-107.3	-107.3	-107.3	J	(71)
		gains (T	í		-i					1		1	. <u> </u>	1	
(72)m=	45.62	44.17	41.17	37.0	9 34.44	;	30.71	27.54	31.6	33.05	37.27	42.04	44.18		(72)
		gains =	· · · · ·					. ,	. ,	+ (69)m +	(70)m + (` T	71)m + (72)	1	1	
(73)m=	378	376.66	363.54	341.8	318.78	2	297.33	283.86	287.82	299.38	321.23	346.41	366.27		(73)
	lar gain														
-			•		om Table 6a	and			tions to a		ne applica		tion.		
Orienta		Access F Table 6d			ea 1²		Flu Tał	x ble 6a		g_ Table 6b	г	FF able 6c		Gains (W)	
Northo	_								. –					. ,	٦
Northea	L	0.77		×	2.61	x		1.28	×	0.63		0.7	=	9	(75)
Northea	L	0.77		×	1.51	x		1.28	×	0.63		0.7	=	5.21	(75)
Northea	Ļ	0.77		×	2.61	x		2.97	×	0.63		0.7	=	18.32	(75)
Northea		0.77		×	1.51	x	2	2.97	x	0.63	× [0.7	=	10.6	(75)
Northea	ast <mark>0.9x</mark>	0.77		x	2.61	x	4	1.38	x	0.63	×	0.7	=	33.01	(75)

Northeast 0.9x	0.77	×	1.51	×	41.38	×	0.63	x	0.7	=	19.1	(75)
Northeast 0.9x	0.77	l x	2.61	x	67.96	x x	0.63	x	0.7	=	54.2	(75)
Northeast 0.9x	0.77	l ^ l x	1.51	x	67.96	x	0.63	x	0.7	=	34.2	(75)
Northeast 0.9x	0.77) ^ x	2.61	x	91.35	x x	0.63	x	0.7	=	72.86	(75)
Northeast 0.9x	0.77	^ x	1.51	x	91.35	x	0.63	x	0.7	=	42.15	(75)
Northeast 0.9x	0.77] ^] x	2.61	x	97.38	x x	0.63	x	0.7	=	77.68	(75)
Northeast 0.9x	0.77	^ x	1.51	x	97.38	x	0.63	x	0.7	=	44.94	(75)
Northeast 0.9x	0.77] x	2.61	x	91.1	 x	0.63	x	0.7	=	72.67	(75)
Northeast 0.9x	0.77] x	1.51	x	91.1	x	0.63	x	0.7	=	42.04	(75)
Northeast 0.9x	0.77	x	2.61	x	72.63	x	0.63	x	0.7	=	57.93	(75)
Northeast 0.9x	0.77	x	1.51	x	72.63	x	0.63	x	0.7	=	33.52	(75)
Northeast 0.9x	0.77	x	2.61	x	50.42	×	0.63	x	0.7	=	40.22	(75)
Northeast 0.9x	0.77	x	1.51	x	50.42	×	0.63	x	0.7	=	23.27	(75)
Northeast 0.9x	0.77	x	2.61	x	28.07	×	0.63	x	0.7	=	22.39	(75)
Northeast 0.9x	0.77	x	1.51	x	28.07	×	0.63	x	0.7	=	12.95	(75)
Northeast 0.9x	0.77	x	2.61	x	14.2	x	0.63	x	0.7	=	11.32	(75)
Northeast 0.9x	0.77	×	1.51	x	14.2	×	0.63	x	0.7	=	6.55	(75)
Northeast 0.9x	0.77	x	2.61	x	9.21	x	0.63	x	0.7	=	7.35	(75)
Northeast 0.9x	0.77	×	1.51	x	9.21	×	0.63	x	0.7	=	4.25	(75)
Southwest _{0.9x}	0.77	×	2.61	x	36.79	Ì	0.63	x	0.7	=	29.35	(79)
Southwest _{0.9x}	0.77	x	1.51	x	36.79		0.63	x	0.7	=	16.98	(79)
Southwest _{0.9x}	0.77	x	2.78	x	36.79		0.63	x	0.7	=	31.26	(79)
Southwest0.9x	0.54	x	12.6	x	36.79		0.63	x	0.7	=	99.36	(79)
Southwest0.9x	0.77	×	2.61	x	62.67]	0.63	x	0.7	=	49.99	(79)
Southwest0.9x	0.77	x	1.51	x	62.67		0.63	x	0.7	=	28.92	(79)
Southwest0.9x	0.77	×	2.78	x	62.67		0.63	x	0.7	=	53.25	(79)
Southwest _{0.9x}	0.54	x	12.6	x	62.67		0.63	x	0.7	=	169.25	(79)
Southwest _{0.9x}	0.77	×	2.61	x	85.75		0.63	x	0.7	=	68.4	(79)
Southwest _{0.9x}	0.77	×	1.51	x	85.75		0.63	x	0.7	=	39.57	(79)
Southwest0.9x	0.77	x	2.78	x	85.75		0.63	x	0.7	=	72.86	(79)
Southwest _{0.9x}	0.54	x	12.6	x	85.75		0.63	x	0.7	=	231.58	(79)
Southwest _{0.9x}	0.77	×	2.61	x	106.25		0.63	x	0.7	=	84.75	(79)
Southwest0.9x	0.77	×	1.51	x	106.25		0.63	x	0.7	=	49.03	(79)
Southwest _{0.9x}	0.77	×	2.78	x	106.25	ļ	0.63	x	0.7	=	90.27	(79)
Southwest _{0.9x}	0.54	x	12.6	x	106.25		0.63	x	0.7	=	286.93	(79)
Southwest _{0.9x}	0.77	x	2.61	x	119.01		0.63	x	0.7	=	94.93	(79)
Southwest _{0.9x}	0.77	×	1.51	x	119.01		0.63	x	0.7	=	54.92	(79)
Southwest _{0.9x}	0.77	×	2.78	x	119.01		0.63	x	0.7	=	101.11	(79)
Southwest _{0.9x}	0.54	×	12.6	x	119.01		0.63	x	0.7	=	321.39	(79)
Southwest _{0.9x}	0.77	×	2.61	x	118.15		0.63	x	0.7	=	94.24	(79)
Southwest _{0.9x}	0.77	×	1.51	x	118.15]	0.63	x	0.7	=	54.52	(79)

Couthwarts								1			-					-
Southwest _{0.9x}	0.77	×	2.7	8	x	1	18.15			0.63	×	0.7		=	100.38	(79)
Southwest _{0.9x}	0.54	X	12	6	x	1	18.15	ļ		0.63	×	0.7		=	319.07	(79)
Southwest _{0.9x}	0.77	x	2.6	1	x	1	13.91			0.63	×	0.7		=	90.86	(79)
Southwest _{0.9x}	0.77	x	1.5	1	x	1	13.91			0.63	×	0.7		=	52.57	(79)
Southwest _{0.9x}	0.77	x	2.7	8	x	1	13.91			0.63	×	0.7		=	96.78	(79)
Southwest _{0.9x}	0.54	x	12	6	x	1	13.91]		0.63	x	0.7		=	307.61	(79)
Southwest0.9x	0.77	x	2.6	1	x	1	04.39]		0.63	x	0.7		=	83.27	(79)
Southwest _{0.9x}	0.77	x	1.5	1	x	1	04.39]		0.63	x	0.7		=	48.17	(79)
Southwest _{0.9x}	0.77	x	2.7	8	x	1	04.39]		0.63	×	0.7		=	88.69	(79)
Southwest0.9x	0.54	x	12	6	x	1	04.39]		0.63	×	0.7		=	281.91	(79)
Southwest _{0.9x}	0.77	x	2.6	1	x	g	2.85]		0.63	×	0.7		=	74.06	(79)
Southwest _{0.9x}	0.77	x	1.5	1	x	g	2.85	Ī		0.63	×	0.7		=	42.85	(79)
Southwest _{0.9x}	0.77	x	2.7	8	x	g	2.85	i		0.63	×	0.7		=	78.89	(79)
Southwest _{0.9x}	0.54	x	12	6	x	g	2.85	İ		0.63	×	0.7		=	250.75	(79)
Southwest _{0.9x}	0.77	x	2.6	1	x	6	9.27	İ		0.63	×	0.7		=	55.25	(79)
Southwest _{0.9x}	0.77	x	1.5	1	x	6	9.27	ĺ		0.63	×	0.7		=	31.97	(79)
Southwest _{0.9x}	0.77	x	2.7	8	x	6	9.27	ĺ		0.63	×	0.7		=	58.85	(79)
Southwest _{0.9x}	0.54	x	12	6	x	6	9.27	ĺ		0.63	×	0.7		=	187.06	(79)
Southwest _{0.9x}	0.77	x	2.6	1	x	4	4.07	i		0.63	× ٦	0.7		=	35.15	(79)
Southwest _{0.9x}	0.77	×	1.5	1	x	4	4.07	1		0.63	۲ × آ	0.7		=	20.34	(79)
Southwest0.9x	0.77	x	2.7	8	x	4	4.07	ĺ		0.63	× ٦	0.7	=	=	37.44	(79)
Southwest0.9x	0.54	x	12	6	x	4	4.07	i		0.63	× ٦	0.7		=	119.01	(79)
Southwest _{0.9x}	0.77	x	2.6	1	x	3	31.49	1		0.63	×	0.7	=	=	25.12	(79)
Southwest _{0.9x}	0.77	x	1.5	1	x	3	31.49]		0.63	۲ × ۲	0.7		=	14.53	(79)
Southwest _{0.9x}	0.77	×	2.7		x		31.49]		0.63	۲ × ۲	0.7		=	26.75	(79)
Southwest _{0.9x}	0.54	x	12		x		31.49]		0.63	×	0.7		=	85.03	(79)
							-	1								
Solar gains in	watts, cal	culated	for eac	n montł	า			(83)m	ו = Sו	um(74)m .	(82)m					
(83)m= 191.16	330.33	464.51	596.55	687.37	6	90.83	662.52	593	.48	510.03	368.4	6 229.82	163	.03		(83)
Total gains –	internal an	nd solar	(84)m =	: (73)m	+ (8	83)m	, watts									
(84)m= 569.16	706.99	828.04	938.39	1006.15	5 98	88.16	946.39	881	.31	809.42	689.6	9 576.23	529	9.3		(84)
7. Mean inte	rnal tempe	erature	(heating	seaso	n)				-						-	
Temperature			`		<i>´</i>	area	from Tab	ole 9	, Th	1 (°C)					21	(85)
Utilisation fa	ctor for gai	ins for I	iving are	ea, h1,n	n (s	ee Ta	ble 9a)			、 ,						
Jan	Feb	Mar	Apr	May	тÒ	Jun	Jul	A	ug	Sep	Oc	Nov	D	ес		
(86)m= 1	0.99	0.98	0.94	0.84	(0.66	0.49	0.5		0.8	0.97	1	1			(86)
Mean interna		ture in l	living ar	a T1 (f	follo	w sta	ns 3 to 7	ı 7 in T	 able				1		1	
(87)m= 19.73	19.94	20.22	20.57	20.83	-	20.96	20.99	20.		20.9	20.54	20.06	19	.7]	(87)
		I			_		I								J	
Temperature	19.95	19.95	eriods ir 19.96	19.96		9.97	19.97	19.	· ·	12 (°C) 19.97	19.96	5 19.96	19.	95	1	(88)
		I			_		I		51	10.01	10.90	, 10.00	1.3.		J	
Utilisation fa	, , , , , , , , , , , , , , , , , , , 				·		i	ŕ	10	0.70	0.05	0.00			1	(90)
(89)m= 1	0.99	0.97	0.92	0.78		0.57	0.38	0.4	+3	0.72	0.95	0.99	1		J	(89)

Mean	internal	l temper	ature in	the rest	of dwelli	ng T2 (fo	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.79	18.99	19.28	19.62	19.85	19.95	19.97	19.97	19.91	19.6	19.13	18.76		(90)
									f	LA = Livin	g area ÷ (4	+) =	0.38	(91)
Maan	internel		atura lta		مام مارزما	lline ar) fl	ΔΤ4	. (4 4)	A) TO			I		_
	19.15	19.36	19.64	or the wh	20.23	20.34	20.36	+ (1 – 1L 20.36	A) × 12 20.29	19.96	19.49	19.12		(92)
(92)m=											19.49	19.12		(32)
				internal	· · · ·		i	i		-	10.40	40.40		(93)
(93)m=	19.15	19.36	19.64	19.98	20.23	20.34	20.36	20.36	20.29	19.96	19.49	19.12		(93)
		ting requ						-		. —				
				mperatui using Ta		ied at ste	ep 11 of	l able 9t	o, so tha	t II,m=(76)m an	d re-calc	ulate	
the ut	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
l Itilies		tor for g			Iviay	Juli	501	Aug	Geb	001	INOV	Dec		
(94)m=		0.99	0.97	0.92	0.8	0.6	0.42	0.48	0.75	0.95	0.99	1		(94)
				4)m x (84		0.0	0.12	0.10	0.10	0.00	0.00	·		()
(95)m=	567.21	700.01	805.18	862.72	803.03	595.33	401.87	420.08	604.4	654.86	571.59	528.02		(95)
							401.07	420.00	004.4	004.00	071.00	520.02		(00)
(96)m=	4.3	4.9	6.5	perature 8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		_									7.1	4.2		(00)
(97)m=				al tempe 1207.42	i	618.22	405.04	425.65	- (90)m 669.44] 1017.71	1352.56	1636.09		(97)
												1030.09		(37)
-				r each n	роптп, ку 92.35	1	i				· · · · · · · · · · · · · · · · · · ·	004.4		
(98)m=	800.66	601.92	477.78	248.18	92.35	0	0	0	0	269.96	562.3	824.4		
								Tota	l per year	(kWh/year) = Sum(9	B) _{15,912} =	3877.55	(98)
Space	e heating	g require	ement in	kWh/m²	²/year								41.03	(99)
		• •			²/year							ĺ	41.03	(99)
8c. S	pace co	oling req	luiremer	nt		ole 10b							41.03	(99)
8c. S	pace co	oling req	luiremer	nt August.	See Tal	ole 10b Jun	Jul	Aug	Sep	Oct	Nov	Dec	41.03	(99)
8c. Sp Calcu	bace coo lated fo Jan	oling req r June, J Feb	uiremer July and Mar	nt August. Apr	See Tal May	Jun		Aug and exte	Sep ernal ten				41.03	(99)
8c. Sp Calcu	lated for Jan loss rate	oling req r June, J Feb	uiremer July and Mar	nt August.	See Tal May	Jun	perature						41.03	(99)
8c. Sp Calcu Heat (100)m=	oace coo Ilated fo Jan Ioss rate	oling req r June, J Feb e Lm (ca	uiremer July and Mar Iculated 0	nt August. Apr using 25	See Tal May 5°C inter	Jun nal temp	perature	and exte	ernal ten	nperatur	e from T	able 10)	41.03	
8c. Sp Calcu Heat (100)m=	oace coo Ilated fo Jan Ioss rate	oling req r June, J Feb e Lm (ca 0	uiremer July and Mar Iculated 0	nt August. Apr using 25	See Tal May 5°C inter	Jun nal temp	perature	and exte	ernal ten	nperatur	e from T	able 10)	41.03	
8c. Sp Calcu Heat (100)m= Utilisa (101)m=	lated fo Jan loss rate 0 ation fac	oling req r June, J Feb e Lm (ca 0 tor for lo	luiremer July and Mar Iculated 0 oss hm 0	nt August. Apr using 25 0	See Tal May 5°C inter 0	Jun nal temp 1012.46 0.92	perature 797.05	and exte 817.14	ernal ten 0	nperatur 0	e from T 0	able 10) 0	41.03	(100)
8c. Sp Calcu Heat (100)m= Utilisa (101)m=	lated for Jan loss rate 0 ation fac 0 Il loss, h	oling req r June, J Feb e Lm (ca 0 tor for lo	luiremer July and Mar Iculated 0 oss hm 0	nt August. Apr using 25 0	See Tal May 5°C inter 0	Jun nal temp 1012.46 0.92	perature 797.05	and exte 817.14	ernal ten 0	nperatur 0	e from T 0	able 10) 0	41.03	(100)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	lated fo Jan loss rate 0 ation fac 0 Il loss, h	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0	July and Mar Iculated 0 oss hm 0 /atts) = (0	nt August. Apr using 25 0 0 (100)m x 0	See Tal May 5°C inter 0 (101)m	Jun nal temp 1012.46 0.92 930.98	0.96 764.89	and exte 817.14 0.94 771.74	o 0 0	nperatur 0 0	e from T 0	able 10) 0	41.03	(100) (101)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	lated for Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar c	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0	July and Mar Iculated 0 oss hm 0 /atts) = (0	nt August. Apr using 25 0 (100)m x	See Tal May 5°C inter 0 (101)m	Jun nal temp 1012.46 0.92 930.98 eather re	797.05 0.96 764.89 egion, se	and exte 817.14 0.94 771.74	o 0 0	nperatur 0 0	e from T 0	able 10) 0	41.03	(100) (101)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m=	lated fo Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0	July and Mar Iculated 0 oss hm 0 /atts) = 0 culated 0	August. Apr using 25 0 (100)m x 0 for appli	See Tal May 5°C inter 0 (101)m 0 cable we	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48	2000 797.05 0.96 764.89 2000, se 1245.02	and exte 817.14 0.94 771.74 e Table 1167.44	ernal ten 0 0 10) 0	nperatur 0 0 0	e from T 0 0 0	able 10) 0 0		(100) (101) (102)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	lated for Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 e cooling	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 g require	July and Mar Iculated 0 oss hm 0 /atts) = 0 culated 0 culated	nt August. Apr using 25 0 (100)m x 0 for appli	See Tal May 5°C inter 0 (101)m (101)m cable we 0 whole c	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48	2000 797.05 0.96 764.89 2000, se 1245.02	and exte 817.14 0.94 771.74 e Table 1167.44	ernal ten 0 0 10) 0	nperatur 0 0 0	e from T 0 0 0	able 10) 0 0		(100) (101) (102)
8c. Sp Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space	lated for Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 e cooling	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 g require	July and Mar Iculated 0 oss hm 0 /atts) = 0 culated 0 culated	August. Apr using 25 0 (100)m x (100)m x for appli 0 <i>r month,</i>	See Tal May 5°C inter 0 (101)m (101)m cable we 0 whole c	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48	2000 797.05 0.96 764.89 2000, se 1245.02	and exte 817.14 0.94 771.74 e Table 1167.44	ernal ten 0 0 10) 0	nperatur 0 0 0	e from T 0 0 0	able 10) 0 0		(100) (101) (102)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1	lated for Jan loss rate 0 ation fac 0 il loss, h 0 (solar (0 (solar (0 e coolin(04)m to	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 gains ca 0 g require zero if (uiremer July and Mar Iculated 0 ss hm 0 /atts) = (0 culated 0 culated 0 ament fo 104)m <	nt August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Iwelling,</i>	2000 2007 200 200	and exte 817.14 0.94 771.74 e Table 1167.44 ous (kW	$0 \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0 0 24 x [(10	e from T 0 0 0 03) <i>m</i> – (*	able 10) 0 0 0 102)m]>		(100) (101) (102)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m=	lated for Jan loss rate 0 ation fac 0 il loss, h 0 (solar (0 (solar (0 e coolin(04)m to	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 g require zero if (0	uiremer July and Mar Iculated 0 ss hm 0 /atts) = (0 culated 0 culated 0 ament fo 104)m <	nt August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Iwelling,</i>	2000 2007 200 200	and exte 817.14 0.94 771.74 e Table 1167.44 ous (kW	$\frac{1}{0}$	0 0 0 24 x [(10 0 = Sum(e from T 0 0 0 03) <i>m</i> – (*	able 10) 0 0 0 102)m] > 0 =	s (41)m	(100) (101) (102) (103)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec	lated for Jan loss rate 0 ation fac 0 il loss, h 0 s (solar g 0 e cooling 04)m to 0	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 g require zero if (0	uiremer July and Mar Iculated 0 oss hm 0 /atts) = (0 culated 0 culated 0 cment fo 104)m < 0	nt August. Apr using 25 0 0 (100)m x 0 (100)m x 0 for appli 0 r month, 3 x (98 0	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Iwelling,</i>	2000 2007 200 200	and exte 817.14 0.94 771.74 e Table 1167.44 ous (kW	$\frac{1}{0}$	0 0 0 24 x [(10 0 = Sum(e from T 0 0 0 03) <i>m</i> – (* 0 104)	able 10) 0 0 0 102)m] > 0 =	c (41)m 915.49	(100) (101) (102) (103)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec	lated for Jan loss rate 0 ation fac 0 il loss, h 0 s (solar o 0 e cooling 04)m to 0 d fractior	oling req r June, J Feb E Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 gains ca 0 g require zero if (0	uiremer July and Mar Iculated 0 oss hm 0 /atts) = (0 culated 0 culated 0 cment fo 104)m < 0	nt August. Apr using 25 0 0 (100)m x 0 (100)m x 0 for appli 0 r month, 3 x (98 0	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Iwelling,</i>	2000 2007 200 200	and exte 817.14 0.94 771.74 e Table 1167.44 ous (kW	$\frac{1}{0}$	0 0 0 24 x [(10 0 = Sum(e from T 0 0 0 03) <i>m</i> – (* 0 104)	able 10) 0 0 0 102)m] > 0 =	c (41)m 915.49	(100) (101) (102) (103)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolece Intermi	lated for Jan loss rate 0 ation fac 0 il loss, h 0 s (solar o 0 e cooling 04)m to 0 d fractior	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 g require zero if (0	uiremenJuly andMarIculated0 0	nt August. Apr using 25 0 (100)m x 0 (100)m x 0 for appli 0 <i>r month,</i> 3 x (98 0	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m 0	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Iwelling,</i> 263.88	2000 2000 2000 2000 2000 2000 2000 200	and exte 817.14 0.94 771.74 e Table 1167.44 ous (kW 294.4	$\begin{array}{c} \text{ernal ten} \\ 0 \\ \hline 0 \\ \hline 0 \\ 10) \\ \hline 0 \\ 10) \\ 0 \\ (h) = 0.02 \\ \hline 0 \\ \hline 0 \\ Total \\ f C = \\ \hline 0 \\ \end{array}$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 3) <i>m</i> – (* 0 104) area ÷ (4 0	able 10) 0 0 0 102)m] > 0 = +) =	c (41)m 915.49	(100) (101) (102) (103)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Spac</i> set (1 (104)m= Coolec Intermi (106)m=	lated for Jan loss rate 0 ation fac 0 ation fac 0 ation fac 0 s (solar c 0 e cooling 04)m to 0 d fractior ittency fa	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 grequire zero if (0	uiremer July and Mar Iculated 0 pss hm 0 /atts) = (0 /atts) = (0 /atts) = (0 lculated 0 able 10b 0	nt August. Apr using 25 0 (100)m x 0 (100)m x 0 for appli 0 <i>r month,</i> 3 x (98 0	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m 0	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Jwelling,</i> 263.88	0.96 764.89 2000, se 1245.02 continue 357.21	and exte 817.14 0.94 771.74 re Table 1167.44 Dus (kW 294.4 0.25	$\begin{array}{c} \text{ernal ten} \\ 0 \\ \hline 0 \\ \hline 0 \\ 10) \\ \hline 0 \\ 10) \\ 0 \\ (h) = 0.02 \\ \hline 0 \\ \hline 0 \\ Total \\ f C = \\ \hline 0 \\ \end{array}$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 3) <i>m</i> – (* 0 104) area ÷ (4 0	able 10) 0 0 0 102)m]> 0 = +) = 0	c (41)m 915.49 1	(100) (101) (102) (103) (104) (105)
8c. Sf Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Spac</i> set (1 (104)m= Coolec Intermi (106)m=	lated for Jan loss rate 0 ation fac 0 il loss, h 0 il loss, h 0 is (solar g 0 e cooling 04)m to 0 d fractior ittency fa 0 cooling	oling req r June, J Feb e Lm (ca 0 tor for lo 0 mLm (W 0 gains cal 0 grequire zero if (0	uiremer July and Mar Iculated 0 pss hm 0 /atts) = (0 /atts) = (0 /atts) = (0 lculated 0 able 10b 0	nt August. Apr using 25 0 (100)m x 0 (100)m x 0 for appli 0 r month, 3 x (98 0	See Tal May 5°C inter 0 (101)m 0 (101)m 0 cable we 0 whole c)m 0	Jun nal temp 1012.46 0.92 930.98 eather re 1297.48 <i>Jwelling,</i> 263.88	0.96 764.89 2000, se 1245.02 continue 357.21	and exte 817.14 0.94 771.74 re Table 1167.44 Dus (kW 294.4 0.25	$\begin{array}{c} \text{ernal ten} \\ 0 \\ \hline 0 \\ \hline 0 \\ 10) \\ \hline 0 \\ 10) \\ 0 \\ (h) = 0.02 \\ \hline 0 \\ \hline 0 \\ Total \\ f C = \\ \hline 0 \\ \end{array}$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 3) <i>m</i> – (* 0 104) area ÷ (4 0	able 10) 0 0 0 102)m]> 0 = +) = 0	c (41)m 915.49 1	(100) (101) (102) (103) (104) (105)

Space cooling requirement in kWh/m²/year	(107) ÷ (4) =	2.42	(108)
8f. Fabric Energy Efficiency (calculated only under special co	nditions, see section 11)		
Fabric Energy Efficiency	(99) + (108) =	43.45	(109)
Target Fabric Energy Efficiency (TFEE)		49.97	(109)

			User D	etails:						
	Ross Boulton Stroma FSAP 20 ⁻	12		Stroma Softwa					028068 on: 1.0.4.18	
		Р	roperty A	Address:	B2A-10	5-07				
	B2A-105-07, Flat T	ype 2-17.	A, Wimb	ledon, L	ondon					
1. Overall dwelling dimens	ions:		_							
Ground floor				a(m²) 94.5	(1a) x	Av. Hei	i ght(m) 6	(2a) =	Volume(m ³) 245.7	(3a)
Total floor area TFA = (1a)+	+(1b)+(1c)+(1d)+(1	e)+(1n	l) g	94.5	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	245.7	(5)
2. Ventilation rate:									<u> </u>	
Number of chimneys	main s heating +	econdar heating 0	y +	0 0] = [total 0	x	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x	20 =	0	(6b)
Number of intermittent fans					- L	3	× ′	10 =	30	(7a)
Number of passive vents						0	x ′	10 =	0	(7b)
Number of flueless gas fires	5					0	x 4	40 =	0	(7c)
					L			Air ch	anges per ho	_l
Infiltration due to obimpour	flues and fans	Sa) ((6 b) (7	a) (7b) (7	7c) -	Г					-
Infiltration due to chimneys, If a pressurisation test has been					continue fro	30 om (9) to (÷ (5) =	0.12	(8)
Number of storeys in the		,	,,,,,				-7		0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.25	o for steel or timber	frame or	0.35 for	masonr	y constr	uction			0	(11)
if both types of wall are prese deducting areas of openings,		sponding to	the greate	er wall area	a (after					
If suspended wooden floo	or, enter 0.2 (unsea	led) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, enter	0.05, else enter 0								0	(13)
Percentage of windows a	nd doors draught s	tripped							0	(14)
Window infiltration				0.25 - [0.2		-	(0	(15)
Infiltration rate				(8) + (10) ·					0	(16)
Air permeability value, q5	•				•	etre of e	nvelope	area	5	(17)
If based on air permeability Air permeability value applies if						is haina us	od		0.37	(18)
Number of sides sheltered	a pressunsation test na	S Deen don	e or a deg	nee an per	Πεαριπτγ	is being us	seu		2	(19)
Shelter factor				(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporating	g shelter factor			(21) = (18)	x (20) =				0.32	(21)
Infiltration rate modified for	monthly wind spee	d								
Jan Feb Ma	ar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spee	d from Table 7									
(22)m= 5.1 5 4.9	9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)n	n ÷ 4									
(22a)m= 1.27 1.25 1.2	3 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.4	0.4	0.39	0.35	0.34	0.3	0.3	0.29	0.32	0.34	0.36	0.37		
		c <i>tive air</i> al ventila	-	rate for t	ne appli	cable ca	se					Г	0	(23a)
				endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)		L	0	(23b)
				iency in %						, , ,		L L	0	(23c)
a) If	balance	d mech	anical ve	entilation	with hea	at recove	erv (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [L 1 – (23c)	-	()
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mech	anical ve	ntilation	without	heat rec	overv (N	и ЛV) (24b)m = (22	1 2b)m + (23b)			
, (24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	use ex	tract ver	tilation o	or positiv	ve input v	ventilatic	n from o	utside	!	ļ	·		
				hen (240	-	-				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous m = (22						0.5]				
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (240	c) or (24	d) in box	x (25)					
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(25)
3. He	at losse	s and he	eat loss r	paramete	ər:									
ELEN		Gros		Openin		Net Ar	ea	U-val	Je	ΑXU		k-value	ŀ	A X k
		area	(m²)	m		A ,n	n²	W/m2	K	(W/	K)	kJ/m²∙K	K k	κJ/K
Windo	ws Type	e 1				2.74	/1 _X	[1/(1.35)-	+ 0.04] =	3.51				(27)
Windo	ws Type	2				1.59	x1/	[1/(1.35)-	- 0.04] =	2.04				(27)
Windo	ws Type	93				2.92	/1 <u>x</u>	[1/(1.35)-	- 0.04] =	3.74				(27)
Windo	ws Type	94				2.74	×1/	[1/(1.35)-	+ 0.04] ₌	3.51				(27)
Windo	ws Type	e 5				1.59	×1/	[1/(1.35)-	+ 0.04] =	2.04				(27)
Windo	ws Type	e 6				13.23	s x1/	[1/(1.35)-	+ 0.04] ₌	16.95				(27)
Walls		45.5	52	24.8	1	20.71	x	0.15		3.11	= 1			(29)
Roof		94.	5	0		94.5	x	0.13		12.28	i F		i —	(30)
Total a	rea of e	lements	, m²			140.0	2							(31)
				ffective wi			ated using	formula 1	/[(1/U-valı	ıe)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =			Г	47.17	(33)
Heat c	apacity	Cm = S((Axk)						((28).	(30) + (3	2) + (32a).	(32e) =	1140.41	(34)
Therm	al mass	parame	ter (TMF	^o = Cm ÷	- TFA) ir	∩ kJ/m²K			Indica	itive Value	: Low	Ī	100	(35)
	-		ere the de tailed calci	tails of the ulation.	constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						25.74	(36)
			are not kn	own (36) =	= 0.05 x (3	1)			(00)	(0.0)		г		
	abric he			1						· (36) =	(0.5) (5)	L	72.91	(37)
Ventila		1		monthl			ll	A		$= 0.33 \times ($	T			
(22)~	Jan 47.13	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov			(38)
(38)m=	47.13	46.88	46.63	45.45	45.23	44.2	44.2	44.01	44.6	45.23	45.67	46.14		(30)
			· · · · · · · · · · · · · · · · · · ·	440.00	440.55	44-11	44-7-1-1	440.00		= (37) + (· ·			
(39)m=	120.04		119.54	118.36	118.14	117.11	117.11	116.92	117.51	118.14	118.58	119.05	440.00	(20)
Stroma	FSAP 201	2 Version	: 1.0.4.18 ((SAP 9.92)	- http://ww	ww.stroma	.com			Average =	Sum(39)1	12 / 12=	118. #0ag	<u>le 2 o^{f 39)}</u>

Heat lo	oss para	ameter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.27	1.27	1.26	1.25	1.25	1.24	1.24	1.24	1.24	1.25	1.25	1.26		
Numbe	er of day	/s in mo	nth (Tab	le 1a)	•	•	•		,	Average =	Sum(40)1.	.12 /12=	1.25	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				([1 - exp	o(-0.0003	349 x (TF	FA -13.9	9)2)] + 0.0	0013 x (⁻	TFA -13	.9)	68		(42)
Reduce	the annua	al average	hot water		5% if the a	welling is	designed	(25 x N) to achieve		se target o	97. f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres pei	r day for e	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	· · · · ·					
(44)m=	107.7	103.78	99.87	95.95	92.03	88.12	88.12	92.03	95.95	99.87	103.78	107.7		
Enorm	contont of	bot wator	upped op	loulotod m	onthly - 1	100 v Vd r		Tm / 2600			$m(44)_{112} =$		1174.9	(44)
			·		· ·						ables 1b, 10	-		
(45)m=	159.71	139.69	144.14	125.67	120.58	104.05	96.42	110.64	111.97	130.49	142.43	154.67	1540.48	(45)
lf instant	taneous v	vater heati	ng at poin	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		10tal = Su	m(45) ₁₁₂ =		1540.46	(40)
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
	storage										·			
-		. ,		• •			-	within sa	ame ves	sel	(0		(47)
	•	-		ank in dw er (this ir	-			n (47) ombi boil	ers) ente	er 'O' in <i>(</i>	(47)			
	storage		not hat			notantai					,			
a) If m	anufact	turer's de	eclared l	loss fact	or is kno	wn (kWł	n/day):				()		(48)
Tempe	erature f	actor fro	m Table	e 2b							()		(49)
			•	e, kWh/y			I	(48) x (49)) =		(0		(50)
				cylinder rom Tab							()		(51)
		neating s			- (<i></i>				`	<u> </u>		
		from Ta									()		(52)
		actor fro									()		(53)
			•	e, kWh/y	ear			(47) x (51)) x (52) x (53) =		0		(54)
	. ,	(54) in (8	,	for oach	month			((EE))m = (EE) ~ (44)	~	()		(55)
				for each				((56)m = (-	l	(EC)
(56)m=	0 er contain	0 s dedicate	0 d solar sto	0 prage (57)	0 = (56)m	$0 \times [(50) - ($	0 H11)] ∸ (5	0 50) else (5	0 = (56)	0 m where (0 (H11) is fro	0 m Append	lix H	(56)
-				- · ·		1		1	· · ·					(57)
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		
	•	•	,	om Table		E0)		CE (44)	-		(0		(58)
	•						. ,	65 × (41) ing and a		r thermo	ostat)			
(59)m=	0	0	0				0		0	0		0		(59)
	L	I	I	1	I	1	1	1	1	I			l	

Combi	loss ca	lculated	for eac	h month	(61)m =	(60	D) ÷ 36	65 × (41)	m						
(61)m=	0	0	0	0	0		0	0	0	0	0	0	0]	(61)
Total h	neat req	uired for	water h	neating	calculated	d fo	r eacl	n month	(62)m =	= 0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	135.76	118.73	122.52	106.82	102.49	8	38.45	81.96	94.05	95.17	110.91	121.07	131.47		(62)
Solar D	- HW input	calculated	using Ap	pendix G	or Appendix	κΗ	(negati	ve quantity) (enter 'C)' if no sola	r contribu	tion to wate	er heating)	-	
(add a	dditiona	al lines if	FGHR	S and/or	WWHRS	S ap	oplies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Outpu	t from w	ater hea	ter												
(64)m=	135.76	118.73	122.52	106.82	102.49	8	38.45	81.96	94.05	95.17	110.91	121.07	131.47		
			•						Out	put from w	ater heate	er (annual)	I12	1309.4	(64)
Heat g	ains fro	m water	heating	, kWh/r	nonth 0.2	5 ′	[0.85	× (45)m	+ (61)n	n] + 0.8 x	x [(46)m	ı + (57)m	+ (59)m]	
(65)m=	33.94	29.68	30.63	26.7	25.62	2	22.11	20.49	23.51	23.79	27.73	30.27	32.87		(65)
inclu	ude (57)	m in calo	ulation	of (65)r	n only if c	ylir	nder i	s in the c	dwelling	or hot w	vater is f	rom com	munity h	heating	
	. ,	ains (see		. ,	-				U					Ū	
		ns (Table													
Metab	Jan	Feb	Mar	Apr	May	Γ	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m=	134.12	134.12	134.12	134.12		-	34.12	134.12	134.12	134.12	134.12		134.12		(66)
Liahtir		i (calcula			L, equat			(19a) a						1	
(67)m=	22.03	19.57	15.91	12.05	9.01	-	7.6	8.22	10.68	14.33	18.2	21.24	22.64	1	(67)
					ndix L, eq							1	1	J	
(68)m=	247.12	249.68	243.22	229.46			95.78	184.87	182.31	188.77	202.53	219.89	236.21	1	(68)
												219.09	230.21]	(00)
	36.41	36.41	36.41	36.41	x L, equa	-	1 L 15 36.41	36.41	, also s 36.41	36.41	36.41	36.41	36.41	1	(69)
(69)m=					30.41	3	0.41	30.41	30.41	30.41	30.41	30.41	30.41	J	(03)
-		ns gains	r`	1		-	-							1	(70)
(70)m=	0	0	0	0	0		0	0	0	0	0	0	0	J	(70)
	<u> </u>	<u> </u>	<u> </u>		ues) (Tab	—	,			1	r	1	1	1	
(71)m=	-107.3	-107.3	-107.3	-107.3	-107.3		107.3	-107.3	-107.3	-107.3	-107.3	-107.3	-107.3		(71)
Water	heating	gains (T	<u> </u>											1	
(72)m=	45.62	44.17	41.17	37.09	34.44	3	30.71	27.54	31.6	33.05	37.27	42.04	44.18]	(72)
Total	interna	gains =	:			_	(66)	m + (67)m	+ (68)m	+ (69)m +	(70)m + (71)m + (72)m		
(73)m=	378	376.66	363.54	341.84	318.78	2	97.33	283.86	287.83	299.39	321.23	346.41	366.27		(73)
	lar gain														
	-		Ũ	ar flux fro	n Table 6a	and		•	tions to co	onvert to th	ne applica		tion.		
Orient		Access F Table 6d		Are m²			Flu	x ole 6a	-	g_ able 6b	-	FF able 6c		Gains (W)	
	-						1 ai							(vv)	-
	ast <mark>0.9x</mark>	0.77)	(2	.74	x	1	1.28	x	0.5	×	0.8	=	8.57	(75)
	ast <mark>0.9x</mark>	0.77)	۲ <u>۱</u>	.59	x	1	1.28	x	0.5	×	0.8	=	4.97	(75)
Northe	ast <mark>0.9x</mark>	0.77)	2	.74	x	2	2.97	x	0.5	× [0.8	=	17.44	(75)
Northe	ast <mark>0.9x</mark>	0.77)	۲ (L	.59	x	2	2.97	x	0.5	x	0.8	=	10.12	(75)
Northe	ast <mark>0.9x</mark>	0.77)	(2	.74	x	4	1.38	x	0.5	x	0.8	=	31.43	(75)

Northeast 0.9x	0.77] ×	1.59	×	41.38] ×	0.5	x	0.8	=	18.24	(75)
Northeast 0.9x	0.77] ×	2.74	x	67.96] ×	0.5	x	0.8	=	51.61	(75)
Northeast 0.9x	0.77	」 】 ×	1.59	×	67.96	」 】 x	0.5	x	0.8	=	29.95	(75)
Northeast 0.9x	0.77	」 】 ×	2.74	x	91.35] x	0.5	x	0.8	=	69.38	(75)
Northeast 0.9x	0.77	」 】 ×	1.59	x	91.35] x	0.5	x	0.8	=	40.26	(75)
Northeast 0.9x	0.77] ×	2.74	x	97.38	x	0.5	x	0.8	=	73.97	(75)
Northeast 0.9x	0.77] ×	1.59	x	97.38	x	0.5	x	0.8	=	42.92	(75)
Northeast 0.9x	0.77] x	2.74	x	91.1	x	0.5	x	0.8	=	69.19	(75)
Northeast 0.9x	0.77] ×	1.59	x	91.1	x	0.5	x	0.8	=	40.15	(75)
Northeast 0.9x	0.77	x	2.74	x	72.63	x	0.5	x	0.8	=	55.16	(75)
Northeast 0.9x	0.77	×	1.59	×	72.63	x	0.5	x	0.8	=	32.01	(75)
Northeast 0.9x	0.77	×	2.74	x	50.42	x	0.5	x	0.8	=	38.3	(75)
Northeast 0.9x	0.77	x	1.59	x	50.42	x	0.5	x	0.8	=	22.22	(75)
Northeast 0.9x	0.77	x	2.74	x	28.07	x	0.5	x	0.8	=	21.32	(75)
Northeast 0.9x	0.77	x	1.59	x	28.07	x	0.5	x	0.8	=	12.37	(75)
Northeast 0.9x	0.77	×	2.74	x	14.2	x	0.5	x	0.8	=	10.78	(75)
Northeast 0.9x	0.77	×	1.59	×	14.2	x	0.5	x	0.8	=	6.26	(75)
Northeast 0.9x	0.77	×	2.74	x	9.21	x	0.5	x	0.8	=	7	(75)
Northeast 0.9x	0.77	×	1.59	×	9.21	x	0.5	x	0.8	=	4.06	(75)
Southwest _{0.9x}	0.77	x	2.74	x	36.79]	0.5	x	0.8	=	27.95	(79)
Southwest _{0.9x}	0.77	×	1.59	x	36.79]	0.5	x	0.8	=	16.22	(79)
Southwest _{0.9x}	0.77	×	2.92	x	36.79]	0.5	x	0.8	=	29.78	(79)
Southwest _{0.9x}	0.54	×	13.23	x	36.79]	0.5	x	0.8	=	94.63	(79)
Southwest _{0.9x}	0.77	x	2.74	x	62.67		0.5	x	0.8	=	47.6	(79)
Southwest _{0.9x}	0.77	x	1.59	x	62.67		0.5	x	0.8	=	27.62	(79)
Southwest _{0.9x}	0.77	×	2.92	×	62.67]	0.5	x	0.8	=	50.73	(79)
Southwest _{0.9x}	0.54	×	13.23	×	62.67		0.5	x	0.8	=	161.19	(79)
Southwest _{0.9x}	0.77	×	2.74	×	85.75	ļ	0.5	x	0.8	=	65.13	(79)
Southwest _{0.9x}	0.77	×	1.59	x	85.75	ļ	0.5	x	0.8	=	37.8	(79)
Southwest0.9x	0.77	×	2.92	x	85.75	ļ	0.5	x	0.8	=	69.41	(79)
Southwest _{0.9x}	0.54	×	13.23	x	85.75	ļ	0.5	x	0.8	=	220.55	(79)
Southwest _{0.9x}	0.77	×	2.74	x	106.25	ļ	0.5	x	0.8	=	80.7	(79)
Southwest0.9x	0.77	×	1.59	X	106.25	ļ	0.5	x	0.8	=	46.83	(79)
Southwest _{0.9x}	0.77	×	2.92	x	106.25]	0.5	x	0.8	=	86	(79)
Southwest _{0.9x}	0.54	×	13.23	×	106.25]	0.5	x	0.8	=	273.27	(79)
Southwest _{0.9x}	0.77	×	2.74	X	119.01	ļ	0.5	x	0.8	=	90.39	(79)
Southwest _{0.9x}	0.77	×	1.59	×	119.01]	0.5	x	0.8	=	52.45	(79)
Southwest _{0.9x}	0.77	×	2.92	×	119.01]	0.5	x	0.8	=	96.33	(79)
Southwest _{0.9x}	0.54	×	13.23	×	119.01]	0.5	x	0.8	=	306.08	(79)
Southwest _{0.9x}	0.77	×	2.74	×	118.15]	0.5	x	0.8	=	89.74	(79)
Southwest _{0.9x}	0.77	×	1.59	x	118.15		0.5	x	0.8	=	52.07	(79)

Southwest _{0.9x}	0.77	x	2.9	2	x	1.	18.15	1	<u> </u>	0.5	x	0.8		=	95.63	(79)
Southwest _{0.9x}	0.77	^	13.		x	<u> </u>	18.15]		0.5		0.8		=	303.87	(79)
Southwest _{0.9x}	0.34	^	2.7		x	r	13.91]		0.5		0.8		=	86.52	(79)
Southwest _{0.9x}	0.77	x	1.5		x		13.91]		0.5		0.8		=	50.21	(79)
Southwest _{0.9x}	0.77	x	2.9		x	<u> </u>	13.91	1		0.5		0.8		=	92.2	(79)
Southwest _{0.9x}	0.54	x	13.		x		13.91]		0.5	x	0.8		=	292.96	(79)
Southwest0.9x	0.77		2.7		x		04.39]		0.5		0.8		=	79.29	(79)
Southwest _{0.9x}	0.77	x	1.5		x		04.39]		0.5	x	0.8		=	46.01	(79)
Southwest _{0.9x}	0.77	x	2.9		x		04.39]		0.5		0.8		=	84.5	(79)
Southwest0.9x	0.54	×	13.		x		04.39]		0.5	×	0.8		=	268.48	(79)
Southwest _{0.9x}	0.77	x	2.7		x		2.85]		0.5	×	0.8		=	70.52	(79)
Southwest _{0.9x}	0.77	x	1.5		x		2.85]		0.5		0.8		=	40.92	(79)
Southwest _{0.9x}	0.77	x	2.9		x		2.85]		0.5		0.8		=	75.16	(79)
Southwest _{0.9x}	0.54	x	13.		x		2.85]		0.5		0.8		=	238.81	(79)
Southwest _{0.9x}	0.77	x	2.7		x		9.27]		0.5		0.8		=	52.61	(79)
Southwest _{0.9x}	0.77	×	1.5		x		9.27]		0.5	- x	0.8		=	30.53	(79)
Southwest _{0.9x}	0.77	x	2.9		x		9.27]		0.5		0.8		=	56.07	(79)
Southwest _{0.9x}	0.54	×	13.		x		9.27]		0.5	×	0.8		=	178.15	(79)
Southwest _{0.9x}	0.77	x	2.7		x		4.07]		0.5	- x	0.8		=	33.47	(79)
Southwest _{0.9x}	0.77	×	1.5		x	r	4.07	1		0.5	×	0.8		=	19.42	(79)
Southwest _{0.9x}		×	2.9		x		4.07]		0.5	×	0.8		=	35.67	(79)
Southwest _{0.9x}	0.54	×	13.		x		4.07]		0.5	- x	0.8		=	113.35	(79)
Southwest _{0.9x}	0.77	x	2.7		x	r	1.49]		0.5		0.8		=	23.92	(79)
Southwest _{0.9x}	0.77	×	1.5		x		1.49]		0.5	×	0.8		=	13.88	(79)
Southwest _{0.9x}	0.77	x	2.9		x		1.49]		0.5	- x	0.8		=	25.49	(79)
Southwest _{0.9x}	0.54	×	13.		x		1.49]		0.5	۲ × ۲	0.8		=	80.98	(79)
l								1								
Solar gains in	watts, cal	lculated	l for eacl	n montl	h			(83)m	ו = Sו	um(74)m	(82)m					
(83)m= 182.12	314.71	442.55	568.37	654.9	6	58.21	631.23	565	.45	485.93	351.0	5 218.95	155	.32		(83)
Total gains –	internal ar	nd solar	(84)m =	- (73)m	+ (83)m	, watts									
(84)m= 560.12	691.37	806.09	910.21	973.68	9	55.53	915.1	853	.27	785.32	672.28	3 565.36	521	.6		(84)
7. Mean inte	rnal tempe	erature	(heating	seaso	n)											
Temperature	during he	eating p	eriods ir	n the liv	ving	area f	rom Tab	ole 9	, Th	1 (°C)					21	(85)
Utilisation fac	ctor for ga	ins for l	iving are	ea, h1,r	n (s	ee Ta	ble 9a)									_
Jan	Feb	Mar	Apr	May	'	Jun	Jul	A	ug	Sep	Oct	Nov	D	ес		
(86)m= 0.97	0.95	0.91	0.85	0.75		0.62	0.5	0.5	54	0.72	0.88	0.95	0.9	17		(86)
Mean interna	al tempera	ture in	living are	ea T1 (follo	w ste	ps 3 to 7	7 in T	able	e 9c)						
<mark>(87)m=</mark> 18.35	18.69	19.19	19.8	20.33	2	20.72	20.89	20.	86	20.56	19.84	18.98	18.	28		(87)
Temperature	during he	eating p	eriods ir	n rest o	f dw	elling	from Ta	able 9	9, Tł	n2 (°C)						
(88)m= 19.86	19.87	19.87	19.88	19.88	1	9.89	19.89	19.	89	19.89	19.88	19.88	19.8	87		(88)
Utilisation fa	ctor for ga	ins for I	rest of d	wellina.	, h2.	,m (se	e Table	9a)								
(89)m= 0.96	0.94	0.9	0.83	0.71		0.55	0.39	0.4	14	0.66	0.86	0.94	0.9	7		(89)
L					-										I	

Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (fo	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	17.45	17.79	18.28	18.88	19.38	19.72	19.84	19.82	19.59	18.93	18.09	17.39		(90)
I									f	LA = Livin	ig area ÷ (4	4) =	0.38	(91)
Moon	intorno	Itompor	oturo (fo	r tho wh	olo dwo	lling) – fl	Δ 🗸 Τ1	+ (1 – fL	A) v T2			I		_
(92)m=	17.8	18.13	18.63	19.23	19.74	20.1	20.24	20.22	19.96	19.28	18.43	17.74		(92)
								4e, whe			10.10			()
(93)m=	17.8	18.13	18.63	19.23	19.74	20.1	20.24	20.22	19.96	19.28	18.43	17.74		(93)
		ting requ	l		10.14	20.1	20.24	20.22	10.00	10.20	10.40	17.74		()
					re obtair	od at st	on 11 of	Table Of	a so tha	t Ti m_('	76)m an	d re-calc	ulato	
				using Ta			ерттог), so ina	t 11,111–(70)III ali	u ie-caic	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g		· ·	, , , , , , , , , , , , , , , , , , ,			<u> </u>	•					
(94)m=	0.95	0.92	0.88	0.81	0.7	0.56	0.43	0.47	0.67	0.84	0.93	0.96		(94)
Usefu	I gains,	hmGm	, W = (9	4)m x (8-	4)m									
(95)m=	532.48	637.75	709.13	735.82	685.55	539.14	389.97	399.42	522.43	566.84	524.94	499.4		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8							I	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempo	erature,	Lm , W =	- =[(39)m :	r [(93)m	– (96)m	1				
(97)m=		1585.16	i	· · ·	950.4	644.07	426.39	446.59	688.74	1025.6	1343.19	1611.33		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mont	h = 0.02	24 x [(97))m – (95)m] x (4 ⁻	1)m			
(98)m=	809.13	636.66	551	350.61	197.05	0	0	0	0	341.32	, 589.15	827.28		
								Tota	l per year	(kWh/year	r) = Sum(9	8)15,912 =	4302.19	(98)
Snac	a hoatin	a roquir	omont in	kWh/m²	2 woor								45.50	_](99)
					year								45.53	(99)
	bace co	olina rec	wiremer	ht .										
Calcu														
Guida		r June, J	July and	August.			Γ							
	Jan	r June, . Feb	July and Mar	August. Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat	Jan loss rate	r June, J Feb e Lm (ca	July and Mar Iculated	August. Apr using 2	May 5°C inter	Jun nal temp	perature	and exte	ernal ten	nperatur	e from T	able 10)		(100)
Heat (100)m=	Jan loss rate 0	r June, C Feb e Lm (ca	July and Mar Iculated	August. Apr	May	Jun	perature							(100)
Heat (100)m= Utilisa	Jan loss rate 0 ation fac	r June, C Feb E Lm (ca 0 tor for lo	July and Mar Iculated 0 pss hm	August. Apr using 29	May 5°C inter 0	Jun nal temp 1100.83	berature 866.61	and exte 888.59	ernal ten 0	nperatur 0	e from T	able 10) ⁰		
Heat (100)m= Utilisa (101)m=	Jan loss rate 0 ation fac	r June, C Feb E Lm (ca 0 ttor for lc	July and Mar Iculated 0 oss hm 0	August. Apr using 25 0	May 5°C inter 0	Jun nal temp 1100.83 0.76	perature	and exte	ernal ten	nperatur	e from T	able 10)		(100) (101)
Heat (100)m= Utilisa (101)m= Usefu	Jan loss rate 0 ation fac 0 Il loss, h	r June, C Feb E Lm (ca 0 tor for lc 0 mLm (V	July and Mar Iculated 0 oss hm 0 /atts) = 0	August. Apr using 29 0 (100)m >	May 5°C inter 0 (101)m	Jun nal temp 1100.83 0.76	0.82	and exte 888.59 0.79	o 0 0	nperatur 0 0	e from T 0 0	able 10) 0		(101)
Heat (100)m= Utilisa (101)m= Usefu (102)m=	Jan loss rate 0 ation fac 0 Il loss, h 0	r June, C Feb E Lm (ca 0 ttor for lo 0 mLm (W 0	July and Mar Iculated 0 oss hm 0 /atts) = 0	August. Apr using 29 0 (100)m > 0	May 5°C inter 0 (101)m	Jun nal temp 1100.83 0.76 836.14	0.82 710.57	and exte 888.59 0.79 706.03	o 0 0	nperatur 0	e from T	able 10) ⁰		
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains	Jan loss rate 0 ation fac 0 Il loss, h 0 (solar g	r June, C Feb E Lm (ca o tor for lc 0 mLm (V 0 gains ca	July and Mar Iculated 0 oss hm 0 /atts) = 0 Iculated	August. Apr using 29 0 (100)m > 0 for appli	May 5°C inter 0 (101)m 0 cable we	Jun nal temp 1100.83 0.76 836.14 eather re	0.82 710.57 2000, se	and exte 888.59 0.79 706.03 ee Table	o 0 0 10)	nperatur 0 0	e from T 0 0	able 10) 0 0		(101) (102)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m=	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0	r June, C Feb e Lm (ca o tor for lo o mLm (W 0 gains ca 0	July and Mar Iculated 0 oss hm 0 /atts) = 0 Iculated 0	August. Apr using 29 0 (100)m > 0 for appli	May 5°C inter 0 (101)m 0 cable we	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41	0.82 710.57 9gion, se 1206.58	and exte 888.59 0.79 706.03 ee Table 1132.96	0 0 0 10) 0	nperatur 0 0 0	e from T 0 0	able 10) 0 0		(101)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i>	Jan loss rate o ation fac 0 Il loss, h 0 s (solar s 0 e cooling	r June, C Feb e Lm (ca o tor for lo o mLm (W o gains ca o g require	July and Mar Iculated 0 oss hm 0 /atts) = 0 Iculated 0 ement fo	August. Apr using 29 0 (100)m > (100)m > for appli 0 <i>r month,</i>	May 5°C inter 0 (101)m 0 cable w 0 whole c	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41	0.82 710.57 9gion, se 1206.58	and exte 888.59 0.79 706.03 ee Table 1132.96	0 0 0 10) 0	nperatur 0 0 0	e from T 0 0	able 10) 0 0		(101) (102)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i> set (1	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 e cooling 04)m to	r June, C Feb E Lm (ca o tor for lo o mLm (W o gains ca o g require zero if (July and Mar Iculated 0 pss hm 0 /atts) = 0 /culated 0 /atts) = 0 lculated 0 1culated 0 1culated 0 ament for 104)m	August. Apr using 29 0 (100)m > 0 for appli 0 r month, < 3 × (98	May 5°C inter 0 (101)m cable we cable we 0 whole c)m	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 dwelling,	2000 200 2000 2	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW	0 0 10) 0 <i>(h) = 0.0,</i>	0 0 0 24 x [(10	e from T 0 0 0 0 03)m - (1	able 10) 0 0 0 102)m]:		(101) (102)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i>	Jan loss rate o ation fac 0 Il loss, h 0 s (solar s 0 e cooling	r June, C Feb e Lm (ca o tor for lo o mLm (W o gains ca o g require	July and Mar Iculated 0 oss hm 0 /atts) = 0 Iculated 0 ement fo	August. Apr using 29 0 (100)m > (100)m > for appli 0 <i>r month,</i>	May 5°C inter 0 (101)m 0 cable w 0 whole c	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41	0.82 710.57 9gion, se 1206.58	and exte 888.59 0.79 706.03 ee Table 1132.96	r r r a l ten 0 0 10) 0 (h) = 0.0. 0	0 0 0 24 x [(10	e from T 0 0 0 0 0 0 3) <i>m</i> – (*	able 10) 0 0 0 102)m]:	x (41)m	(101) (102) (103)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i> set (1 (104)m=	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar s 0 s (solar s 0 e coolins 04)m to 0	r June, C Feb Lm (ca 0 tor for lc 0 mLm (W 0 gains ca 0 g require zero if (0	July and Mar Iculated 0 pss hm 0 /atts) = 0 /culated 0 /atts) = 0 lculated 0 1culated 0 1culated 0 ament for 104)m	August. Apr using 29 0 (100)m > 0 for appli 0 r month, < 3 × (98	May 5°C inter 0 (101)m cable we cable we 0 whole c)m	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 dwelling,	2000 200 2000 2	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW	$\frac{1}{0}$ $\frac{1}{10}$	0 0 24 x [(10 0 = Sum(e from T 0 0 0 03) <i>m</i> – (* 0 104)	able 10) 0 0 0 102)m] 2 0 =	x (41)m 989.99	(101) (102) (103) (104)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i> set (1 (104)m= Coolec	Jan loss rate ation fac 0 Il loss, h 0 s (solar g 0 s (solar g 0 e cooling 04)m to 0	r June, C Feb E Lm (ca tor for lo o mLm (W 0 gains ca 0 g require zero if (0	July and Mar Iculated 0 oss hm 0 /atts) = 0 /atts) = 0 Iculated 0 Iculated 0 ament fo 104)m <	August. Apr using 29 0 (100)m > 0 for appli 0 r month, 3 × (98 0	May 5°C inter 0 (101)m cable we cable we 0 whole c)m	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 dwelling,	2000 200 2000 2	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW	$\frac{1}{0}$ $\frac{1}{10}$	0 0 24 x [(10 0 = Sum(e from T 0 0 0 0 0 0 3) <i>m</i> – (*	able 10) 0 0 0 102)m] 2 0 =	x (41)m	(101) (102) (103)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i> set (1 (104)m= Coolec	Jan loss rate ation fac 0 Il loss, h 0 s (solar g 0 s (solar g 0 e cooling 04)m to 0	r June, C Feb Lm (ca 0 tor for lc 0 mLm (W 0 gains ca 0 g require zero if (0	July and Mar Iculated 0 oss hm 0 /atts) = 0 /atts) = 0 Iculated 0 Iculated 0 ament fo 104)m <	August. Apr using 29 0 (100)m > 0 for appli 0 r month, 3 × (98 0	May 5°C inter 0 (101)m cable we cable we 0 whole c)m	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 dwelling,	2000 200 2000 2	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW	$\frac{1}{0}$ $\frac{1}{10}$	0 0 24 x [(10 0 = Sum(e from T 0 0 0 03) <i>m</i> – (* 0 104)	able 10) 0 0 0 102)m] 2 0 =	x (41)m 989.99	(101) (102) (103) (104)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= <i>Space</i> set (1 (104)m= Coolece Intermi	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 e cooling 04)m to 0 d fraction	r June, C Feb Lm (ca 0 tor for lc 0 mLm (W 0 gains ca 0 gains ca 0 g require zero if (0 n actor (Ta	July and Mar Iculated 0 0ss hm 0 /atts) = 0 /atts) = 0 lculated 0	August. Apr using 29 0 (100)m > 0 (100)m > 0 for appli 0 or month, 3 × (98 0	May 5°C inter 0 (101)m cable we 0 whole c)m 0	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 <i>dwelling,</i> 303.32	2000 2000 2000 2000 2000 2000 2000 200	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW 317.64	$0 \\ 0 \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 0 \\ Total \\ f C = \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 0 0 0 0 0 1 0 4 1 0 4 1 0 4 0 0 1 0 4 0 0 0 0	able 10) 0 0 0 102)m] : 0 = +) =	x (41)m 989.99 1	(101) (102) (103) (104) (105)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec Intermi (106)m=	Jan loss rate 0 ation fac 0 I loss, h 0 s (solar g 0 e cooling 04)m to 0 0 f fraction attency fr 0	r June, C Feb Lm (ca 0 tor for lc 0 mLm (W 0 gains ca 0 gains ca 0 g require 2 ero if (0 n actor (Ta 0	July and Mar Iculated 0 0ss hm 0 vatts) = 0 /atts) = 0 lculated 0 lculated 0 lculated 0 able 10b 0	August. Apr using 29 0 (100)m > 0 (100)m > 0 for appli 0 or month, 3 × (98 0	May 5°C inter 0 0 (101)m 0 cable wo 0 whole c)m 0 0	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 <i>dwelling,</i> 303.32	Derature 866.61 0.82 710.57 2gion, se 1206.58 continue 369.03 0.25	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW 317.64	$0 \\ 0 \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 0 \\ Total \\ f C = \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 0 0 0 0 0 1 0 4 1 0 4 1 0 4 0 0 1 0 4 0 0 0 0	able 10) 0 0 0 102)m] : 0 = 4) = 0	x (41)m 989.99	(101) (102) (103) (104)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolec Intermi (106)m=	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 s (solar g 0 e cooling 0 d fraction ittency fac 0 cooling	r June, C Feb Lm (ca 0 tor for lc 0 mLm (W 0 gains ca 0 gains ca 0 g require 2 ero if (0 n actor (Ta 0	July and Mar Iculated 0 0ss hm 0 vatts) = 0 /atts) = 0 lculated 0 lculated 0 lculated 0 able 10b 0	August. Apr using 29 0 (100)m > 0 for appli 0 r month, 3 × (98 0	May 5°C inter 0 0 (101)m 0 cable wo 0 whole c)m 0 0	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 <i>dwelling,</i> 303.32	Derature 866.61 0.82 710.57 2gion, se 1206.58 continue 369.03 0.25	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW 317.64	$0 \\ 0 \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 10) \\ 0 \\ 0 \\ 0 \\ Total \\ f C = \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 0 0 24 x [(10 0 = Sum(cooled a	e from T 0 0 0 0 0 0 0 0 0 0 0 1 0 4 1 0 4 1 0 4 0 0 1 0 4 0 0 0 0	able 10) 0 0 0 102)m] : 0 = 4) = 0	x (41)m 989.99 1	(101) (102) (103) (104) (105)
Heat (100)m= Utilisa (101)m= Usefu (102)m= Gains (103)m= Space set (1 (104)m= Coolect Intermi (106)m=	Jan loss rate 0 ation fac 0 Il loss, h 0 s (solar g 0 s (solar g 0 e cooling 0 d fraction ittency fac 0 cooling	r June, C Feb E Lm (ca 0 tor for lo 0 mLm (W 0 gains ca 0 g require 2 ero if (0 n actor (Ta 0 requirer	July and Mar Iculated 0 pss hm 0 vatts) = 0 /atts) = 0 lculated 0 /atts) = 0 lculated 0 /atts) = 0 able 10b 0 able 10b 0 ment for	August. Apr using 2! 0 (100)m > (100)m > 0 for appli 0 r month, 3 × (98 0) 0 month =	May 5°C inter 0 (101)m 0 cable wo 0 whole c)m 0 : (104)m	Jun nal temp 1100.83 0.76 836.14 eather re 1257.41 dwelling, 303.32 0.25 × (105)	0.82 710.57 29jon, se 1206.58 <i>continue</i> 369.03 0.25 × (106)r	and exte 888.59 0.79 706.03 ee Table 1132.96 ous (kW 317.64	$\begin{array}{c} & & \\$	0 0 0 24 x [(10 0 = Sum(cooled = 0 1 = Sum($\begin{array}{c} e \text{ from T} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	able 10) 0 0 0 102)m] : 0 = 4) = 0 =	x (41)m 989.99 1	(101) (102) (103) (104) (105)

Space cooling requirement in kWh/m²/year	(107) ÷ (4) =	2.62	(108)
8f. Fabric Energy Efficiency (calculated only u	nder special conditions, see section 11)		
Fabric Energy Efficiency	(99) + (108) =	48.14	(109)

			User D	etails:						
Assessor Name: Software Name:	Ross Boult Stroma FS			Stroma Softwa					028068 on: 1.0.4.18	
			Property			5-07				
Address :		, Flat Type 2-	17A, Wimt	oledon, L	ondon					
1. Overall dwelling dimer	isions:			()						
Ground floor				a(m²) 94.5	(1a) x	Av. He i	ight(m) 6	(2a) =	Volume(m³) 245.7	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+((1n)	94.5	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	245.7	(5)
2. Ventilation rate:										
Number of chimneys Number of open flues	main heating	second heating + 0 + 0		0 0] = [total 0 0		40 = 20 =	m ³ per hour	(6a) (6b)
Number of intermittent fan				0				10 =	-	J`´
	S					0			0	(7a)
Number of passive vents						0	x ?	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	anges per hou	ır
Infiltration due to chimney					continue fro	0 om (9) to (÷ (5) =	0	(8)
Number of storeys in the						(0) (0)			0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	esent, use the val gs); if equal user	ue corresponding 0.35	g to the great	ter wall are	a (after	uction			0](11)
If suspended wooden flo			0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente									0	(13)
Percentage of windows	and doors dra	aught stripped	1	0.05 10.0		0.01			0	(14)
Window infiltration				0.25 - [0.2 (8) + (10)			(45)		0	(15)
Infiltration rate Air permeability value, c		d in cubic mo	trop por br					oroo	0	(16)
If based on air permeabilit							nvelope	alea	5	(17)
Air permeability value applies						is being us	sed		0.25	(18)
Number of sides sheltered			·			Ū			2	(19)
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter fac	tor		(21) = (18)) x (20) =				0.21	(21)
Infiltration rate modified fo	r monthly win	d speed								
Jan Feb M	Var Apr	May Jur	n Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table	e 7					-		L	
(22)m= 5.1 5 4	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4		-		·	[]			l	
(22a)m= 1.27 1.25 1	.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.27	0.27	0.26	0.23	0.23	0.2	0.2	0.2	0.21	0.23	0.24	0.25		
		<i>ctive air</i> al ventila	<i>change</i> ation:	rate for t	ne appli	cable ca	se					ſ	0.5	(23a)
			using Appe	endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N	N5)) , othe	rwise (23b	o) = (23a)		L [0.5	(23b)
If bala	anced with	heat reco	overy: effic	iency in %	allowing f	or in-use fa	actor (from	n Table 4h) =			L [0.0	(23c)
a) If	balance	ed mecha	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (22	2b)m + ((23b) × [ו (23c) – 1	-	,
, (24a)m=	0	0	0	0	0	0	0	0	0	0				(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	overy (N	и ЛV) (24b)m = (22	1 2b)m + (23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	tilation of	or positiv	e input v	/entilatic	n from c	outside		1	I		
			(23b), t		-	-				.5 × (23k	o)			
(24c)m=	0.52	0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
,			on or wh en (24d)							0.5]				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (240	c) or (24	d) in box	x (25)					
(25)m=	0.52	0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3. He	at losse	s and he	eat loss p	paramete	er:									
ELEN		Gros		Openin		Net Ar	ea	U-val	ue	ΑXU		k-value	· /	A X k
		area	(m²)	. m		A ,r	n²	W/m2	K	(W/	K)	kJ/m²∙ŀ	K	κJ/K
Windo	ws Type	e 1				2.74	/1 _X	[1/(1.35)-	+ 0.04] ₌	3.51				(27)
Windo	ws Type	e 2				1.59	x1/	[1/(1.35)-	⊦ 0.04] ₌	2.04				(27)
Windo	ws Type	93				2.92	/1 <u>x</u>	[1/(1.35)-	+ 0.04] ₌	3.74				(27)
Windo	ws Type	e 4				2.74	×1/	[1/(1.35)-	+ 0.04] ₌	3.51				(27)
Windo	ws Type	e 5				1.59	×1/	[1/(1.35)-	+ 0.04] =	2.04				(27)
Windo	ws Type	e 6				13.23	s x1/	[1/(1.35)-	• 0.04] ₌	16.95				(27)
Walls		45.5	52	24.8	1	20.71	x	0.15		3.11				(29)
Roof		94.	5	0		94.5	x	0.13		12.28	= i			(30)
Total a	area of e	lements	, m²			140.0	2							(31)
			ows, use e sides of ir				ated using	formula 1	/[(1/U-valı	ue)+0.04] a	as given in	n paragraph	3.2	
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)) + (32) =]	47.17	(33)
Heat c	apacity	Cm = S((A x k)						((28).	(30) + (3	2) + (32a).	(32e) =	1140.41	(34)
Therm	al mass	parame	eter (TMF	^o = Cm ÷	- TFA) ir	∩ kJ/m²K			Indica	ative Value	: Low	Ī	100	(35)
	-		ere the de tailed calci		constructi	ion are not	t known pr	ecisely the	e indicative	e values of	f TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<					[25.74	(36)
			are not kn	own (36) =	= 0.05 x (3	1)			(00)	(0.0)		г		
	abric he		-l !- <i>!</i>	I	_					- (36) =	(05) (-)	, [72.91	(37)
Ventila		1	alculated						r	1	(25)m x (5)			
(20)	Jan 42.24	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(38)
(38)m=	42.24	41.81	41.38	40.54	40.54	40.54	40.54	40.54	40.54	40.54	40.54	40.54		(30)
	r		· ·	440 :-	440 :-	440.1-	440 :-	440.5-		i = (37) + (
(39)m=	115.15		114.29	113.45	113.45	113.45	113.45	113.45	113.45	113.45	113.45	113.45	440 77	(20)
Stroma	FSAP 201	2 Version	: 1.0.4.18 ((SAP 9.92)	- http://ww	ww.stroma	.com			Average =	• Sum(39)₁	12 / 12=	Pag	<u>1e 2 o</u> f 39)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	1.22	1.21	1.21	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
Numbe	er of day	s in mo	nth (Tab	le 1a)	1	1	1	1		Average =	Sum(40) ₁	12 /12=	1.2	(40)
Turner	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	(-0.0003	849 x (TF	- A -13.9)2)] + 0.(0013 x (⁻	TFA -13.		68		(42)
Annua <i>Reduce</i>	l averag	e hot wa al average	hot water	usage by		lwelling is	designed	(25 x N) to achieve		se target o	97 f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	-					
(44)m=	107.7	103.78	99.87	95.95	92.03	88.12	88.12	92.03	95.95	99.87	103.78	107.7		
Enerav	content of	hot water	used - cal	lculated m	onthly – 4	190 x Vd r	n y nm y [)Tm / 360(m(44) ₁₁₂ = ables 1b, 1		1174.9	(44)
(45)m=	159.71	139.69	144.14	125.67	120.58	104.05	96.42	110.64	111.97	130.49	142.43	154.67		
(43)11=	159.71	139.09	144.14	123.07	120.30	104.05	90.42	110.04			m(45) ₁₁₂ =		1540.48	(45)
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	^r storage),	enter 0 in	boxes (46		10101 - 00			10-0.40	()
(46)m=	23.96	20.95	21.62	18.85	18.09	15.61	14.46	16.6	16.79	19.57	21.37	23.2		(46)
	storage			•					•					
-		. ,					-	within sa	ame ves	sei		0		(47)
	•	•			velling, e ncludes i			ombi boil	ers) ente	er '0' in (47)			
	storage			(,		,			
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
			-	e, kWh/ye				(48) x (49)) =		1	10		(50)
,				•	loss fact le 2 (kW						0	02		(51)
		-	see secti			.,					0.	02		(0.)
		from Ta									1.	03		(52)
Tempe	erature f	actor fro	m Table	2b							0	.6		(53)
•••			-	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		03		(54)
	. ,	(54) in (5		(((50)			1.	03		(55)
				for each		i	1	((56)m = (1			(==)
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98 H11) is fro	32.01	iv Ll	(56)
-				- · ·				r	· · ·		-			
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
	-	•	,	om Table			(=0) -					0		(58)
	•						. ,	65 × (41) ng and a		r tharma	stat)			
(1100 (59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
(L	L	L	L	L	L_00	L	L		0		× /

(6)m- 0 <th>Total heat require</th> <th></th> <th>0</th> <th>0</th> <th>0</th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Total heat require		0	0	0		<u> </u>						
(62)me 214.99 189.61 199.42 179.16 175.86 157.55 151.7 165.92 165.46 185.76 185.93 209.85 (62) Solar DPW input calculated using Appendix G or Appendix H (negative quantity) (netre '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63) (63)me 0 <td>i</td> <td>d for water</td> <td></td> <td>Ŭ</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>(61)</td>	i	d for water		Ŭ	0	0	0	0	0	0	0		(61)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63) (63)m= 0			heating c	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63) (63)m= 0	(62)m= 214.99 18	9.61 199.42	2 179.16	175.86	157.55	151.7	165.92	165.46	185.76	195.93	209.95		(62)
(63)m= 0 <td>Solar DHW input calcu</td> <td>lated using A</td> <td>opendix G o</td> <td>r Appendix</td> <td>H (negati</td> <td>ve quantity</td> <td>/) (enter '0</td> <td>' if no sola</td> <td>r contribut</td> <td>ion to wate</td> <td>er heating)</td> <td></td> <td></td>	Solar DHW input calcu	lated using A	opendix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
Output from water heater (#4)m= 214.99 189.81 139.42 179.16 175.86 157.55 151.7 165.92 165.46 185.76 185.83 209.95 Output from water heating, kWh/month 0.25 ⁻ [0.85 x (45)m + (61)m] + 0.8 x [[46]m + (57)m + (59)m] (66)m = 97.33 86.39 92.15 84.58 44.32 77.39 76.28 81.01 80.02 87.61 90.15 95.65 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Matabolic gains (Table 5), Watts Quation L9 or L3a), also see Table 5 (67)m = 22.03 19.57 159.1 12.05 9.01 7.6 8.22 10.68 14.33 18.2 21.42 2.64 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (69)m 247.12 249.68 243.22 22.94.6 212.1 196.73 106.8 14.33 18.2 21.42 2.64 (67) Colking agains (calculated in Appendix L, equation L15 or L15a)	(add additional line	es if FGHR	S and/or V	WWHRS	applies	, see Ap	pendix (G)					
	(63)m= 0	0 0	0	0	0	0	0	0	0	0	0		(63)
Output from water heating, kWh/month 0.25 ' $[0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ (64) Heat gains from water heating, kWh/month 0.25 ' $[0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ (65) (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts 6 1 <td< td=""><td>Output from water</td><td>heater</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>	Output from water	heater		-						-			
Heat gains from water heating, kWh/month 0.25 $'[0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ (66)m= 97.33 86.39 92.15 84.58 84.32 77.39 76.28 81.01 80.02 87.61 90.15 95.65 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts (66)m= 134.12 (134.12 134.12 134.12 134.12 134.12 (134.12 134.12 134.12 134.12 134.12 (134.12 134.12 134.12 134.12 134.12 (134.12 134.12 134.12 134.12 (134.12 134.12 134.12 (134.12 134.12 134.12 134.12 (134.12 134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 134.12 (134.12 (134.12 134.12 (134.12 134.12 (134.1	(64)m= 214.99 18	9.61 199.42	2 179.16	175.86	157.55	151.7	165.92	165.46	185.76	195.93	209.95		
(65)m= 97.33 86.39 92.15 84.58 84.32 77.39 76.28 81.01 80.02 87.61 90.15 95.65 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	· · · ·		•				Out	out from wa	ater heate	r (annual)₁	12	2191.32	(64)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	Heat gains from w	ater heatin	g, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)n	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
S. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts (66)m= 134.12 134.13 134.13 136.41 364.	(65)m= 97.33 86	6.39 92.15	84.58	84.32	77.39	76.28	81.01	80.02	87.61	90.15	95.65	- -	(65)
S. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts (66)m= 134.12 134.13 134.13 136.41 364.	include (57)m ir	calculation	n of (65)m	onlv if c	vlinder i	s in the c	dwellina	or hot w	ater is fr	om com	r munitv h	eating	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,	-	,						, .	g	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$).									
(66)me 134.12				May	lup	lul	Δυσ	Son	Oct	Nov	Dec	l	
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 22.03 19.57 15.91 12.05 9.01 7.6 8.22 10.68 14.33 18.2 21.24 22.64 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 247.12 249.68 243.22 229.46 212.1 195.78 184.87 182.31 188.77 202.53 219.89 236.21 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 36.41 (69) Pumps and fans gains (Table 5a) (70)m= $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $			· ·	-									(66)
									104.12	104.12	104.12		(00)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 247.12 249.68 243.22 229.46 212.1 195.78 184.87 182.31 188.77 202.53 219.89 236.21 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 36.41 36.4				· ·				i	40.0	04.04	00.04	I	(67)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_							21.24	22.64		(07)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 36.41 317.3 -107.3 $-$		· · · · · · · · · · · · · · · · · · ·					·	· · · · · ·			[I	(22)
	(68)m= 247.12 24	9.68 243.22	2 229.46	212.1	195.78	184.87	182.31	188.77	202.53	219.89	236.21		(68)
Pumps and fans gains (Table 5a) (70)m= 0 0 0 0 0 0 0 0 0 0		Iculated in	Appendix	L, equat	ion L15	or L15a)	, also se	e Table	5			L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(69)m= 36.41 36	5.41 36.41	36.41	36.41	36.41	36.41	36.41	36.41	36.41	36.41	36.41		(69)
Losses e.g. evaporation (negative values) (Table 5) (71)m= $\frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3} \frac{-107.3}{-107.3}$ (71) Water heating gains (Table 5) (72)m= $\frac{130.82}{130.82} \frac{128.55}{123.86} \frac{117.47}{117.47} \frac{113.33}{107.49} \frac{102.53}{108.89} \frac{111.14}{117.75} \frac{117.5}{125.21} \frac{128.56}{128.56}$ (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 463.2 461.04 446.23 422.22 397.67 374.11 358.85 365.11 377.48 401.72 429.58 450.66 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Area Flux g_{-} FF Gains Table 6a Table 6b Table 6c (W) Northeast 0.9x 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)	Pumps and fans g	ains (Table	e 5a)			-				-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(70)m= 0	0 0	0	0	0	0	0	0	0	0	0		(70)
Water heating gains (Table 5) (72)m= 130.82 128.55 123.86 117.47 113.33 107.49 102.53 108.89 111.14 117.75 125.21 128.56 (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 463.2 461.04 446.23 422.22 397.67 374.11 358.85 365.11 377.48 401.72 429.58 450.66 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Area m ² Flux g_ FF Gains Table 6c (W) Northeast 0.9x 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)	Losses e.g. evapo	oration (neg	ative valu	es) (Tab	le 5)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(71)m= -107.3 -10	07.3 -107.3	3 -107.3	-107.3	-107.3	-107.3	-107.3	-107.3	-107.3	-107.3	-107.3		(71)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$ $(73)m=$ 463.2 461.04 446.23 422.22 397.67 374.11 358.85 365.11 377.48 401.72 429.58 450.66 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Area Flux g FF Gains Orientation: Access Factor Area Flux g FF Gains Northeast $0.9x$ 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)	Water heating gai	ns (Table 5)										
$\begin{array}{c} \text{(73)} \texttt{m} = & 463.2 & 461.04 & 446.23 & 422.22 & 397.67 & 374.11 & 358.85 & 365.11 & 377.48 & 401.72 & 429.58 & 450.66 & (73) \\ \hline \textbf{6. Solar gains:} \\ \textbf{Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. \\ \textbf{Orientation:} & \textbf{Access Factor} & \textbf{Area} & Flux & \textbf{g} & FF & \textbf{Gains} \\ \textbf{Table 6d} & \textbf{m}^2 & \textbf{Table 6a} & \textbf{Table 6b} & \textbf{Table 6c} & (W) \\ \textbf{Northeast } \textbf{0.9x} & \textbf{0.77} & \textbf{x} & \textbf{2.74} & \textbf{x} & \textbf{11.28} & \textbf{x} & \textbf{0.5} & \textbf{x} & \textbf{0.8} & \textbf{=} & \textbf{8.57} & (75) \\ \textbf{Nertheast} \end{array}$	(72)m= 130.82 12	8.55 123.80	6 117.47	113.33	107.49	102.53	108.89	111.14	117.75	125.21	128.56		(72)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total internal gai	ns =	-		(66)	m + (67)m	ı + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72)	m		
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.Orientation:Access Factor Table 6dArea m²Flux Table 6a g_{-} Table 6bFF Table 6cGains (W)Northeast 0.9x0.77x2.74x11.28x0.5x0.8=8.57(75)	<u>_</u>		3 422.22	397.67	374.11	358.85	365.11	377.48	401.72	429.58	450.66		(73)
Orientation:Access Factor Table 6dArea m²Flux Table 6a g_{-} Table 6bFF Table 6cGains (W)Northeast 0.9x0.77x2.74x11.28x0.5x0.8=8.57(75)	6. Solar gains:			•									
Table 6d m^2 Table 6aTable 6bTable 6c(W)Northeast $0.9x$ 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)North cost 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)	Solar gains are calcu	lated using so	lar flux from	Table 6a a	and assoc	iated equa	tions to co	onvert to th	e applicat	ole orientat	ion.		
Northeast $0.9x$ 0.77 x 2.74 x 11.28 x 0.5 x 0.8 = 8.57 (75)	Orientation: Acce	ess Factor	Area		Flu	x		g_		FF		Gains	
	Tabl	e 6d	m²		Tal	ole 6a	Т	able 6b	Т	able 6c		(W)	
	Northeast 0.9x	0.77	x 2.	74	x 1	1.28	x	0.5	x	0.8	=	8.57	(75)
Northeast $0.9x$ 0.77 X 1.59 X 11.28 X 0.5 X 0.8 = 4.97 (75)	Northeast 0.9x	0.77	× 1.	59	x 1	1.28	x	0.5		0.8	=	4.97	(75)
Northeast 0.9x 0.77 x 2.74 x 22.97 x 0.5 x 0.8 = 17.44 (75)	Northeast 0.9x	0.77	x 2.	74	x 2	2.97	x	0.5		0.8	=	17.44	(75)
Northeast 0.9x 0.77 x 1.59 x 22.97 x 0.5 x 0.8 = 10.12 (75)	Northeast 0.9x		x 1.5	59			×	0.5	<u></u>	0.8	=	10.12	(75)
	Northeast 0.9x	0.77	x 2.			1.38	x	0.5		0.8	=	31.43	(75)

Northeast 0.9x	0.77] ×	1.59	×	41.38] ×	0.5	x	0.8	=	18.24	(75)
Northeast 0.9x	0.77] ×	2.74	x	67.96] x	0.5	x	0.8	=	51.61	(75)
Northeast 0.9x	0.77	」 】 ×	1.59	×	67.96	」 】 x	0.5	x	0.8	=	29.95	(75)
Northeast 0.9x	0.77	」 】 ×	2.74	x	91.35] x	0.5	x	0.8	=	69.38	(75)
Northeast 0.9x	0.77	」 】 ×	1.59	x	91.35] x	0.5	x	0.8	=	40.26	(75)
Northeast 0.9x	0.77] ×	2.74	x	97.38	x	0.5	x	0.8	=	73.97	(75)
Northeast 0.9x	0.77] ×	1.59	x	97.38	x	0.5	x	0.8	=	42.92	(75)
Northeast 0.9x	0.77] x	2.74	x	91.1	x	0.5	x	0.8	=	69.19	(75)
Northeast 0.9x	0.77] ×	1.59	x	91.1	x	0.5	x	0.8	=	40.15	(75)
Northeast 0.9x	0.77	x	2.74	x	72.63	x	0.5	x	0.8	=	55.16	(75)
Northeast 0.9x	0.77	×	1.59	×	72.63	x	0.5	x	0.8	=	32.01	(75)
Northeast 0.9x	0.77	x	2.74	x	50.42	x	0.5	x	0.8	=	38.3	(75)
Northeast 0.9x	0.77	x	1.59	x	50.42	x	0.5	x	0.8	=	22.22	(75)
Northeast 0.9x	0.77	x	2.74	x	28.07	x	0.5	x	0.8	=	21.32	(75)
Northeast 0.9x	0.77	x	1.59	x	28.07	x	0.5	x	0.8	=	12.37	(75)
Northeast 0.9x	0.77	×	2.74	x	14.2	x	0.5	x	0.8	=	10.78	(75)
Northeast 0.9x	0.77	×	1.59	×	14.2	x	0.5	x	0.8	=	6.26	(75)
Northeast 0.9x	0.77	×	2.74	x	9.21	x	0.5	x	0.8	=	7	(75)
Northeast 0.9x	0.77	x	1.59	x	9.21	x	0.5	x	0.8	=	4.06	(75)
Southwest _{0.9x}	0.77	x	2.74	x	36.79]	0.5	x	0.8	=	27.95	(79)
Southwest _{0.9x}	0.77	×	1.59	x	36.79]	0.5	x	0.8	=	16.22	(79)
Southwest _{0.9x}	0.77	x	2.92	x	36.79]	0.5	x	0.8	=	29.78	(79)
Southwest _{0.9x}	0.54	×	13.23	x	36.79]	0.5	x	0.8	=	94.63	(79)
Southwest _{0.9x}	0.77	x	2.74	x	62.67		0.5	x	0.8	=	47.6	(79)
Southwest _{0.9x}	0.77	x	1.59	x	62.67		0.5	x	0.8	=	27.62	(79)
Southwest _{0.9x}	0.77	x	2.92	x	62.67		0.5	x	0.8	=	50.73	(79)
Southwest _{0.9x}	0.54	×	13.23	x	62.67		0.5	x	0.8	=	161.19	(79)
Southwest _{0.9x}	0.77	×	2.74	x	85.75	ļ	0.5	x	0.8	=	65.13	(79)
Southwest _{0.9x}	0.77	×	1.59	x	85.75	ļ	0.5	x	0.8	=	37.8	(79)
Southwest0.9x	0.77	×	2.92	x	85.75	ļ	0.5	x	0.8	=	69.41	(79)
Southwest _{0.9x}	0.54	×	13.23	x	85.75	ļ	0.5	x	0.8	=	220.55	(79)
Southwest _{0.9x}	0.77	×	2.74	x	106.25	ļ	0.5	x	0.8	=	80.7	(79)
Southwest0.9x	0.77	×	1.59	X	106.25	ļ	0.5	x	0.8	=	46.83	(79)
Southwest _{0.9x}	0.77	×	2.92	x	106.25]	0.5	x	0.8	=	86	(79)
Southwest _{0.9x}	0.54	×	13.23	×	106.25]	0.5	x	0.8	=	273.27	(79)
Southwest _{0.9x}	0.77	×	2.74	X	119.01	ļ	0.5	x	0.8	=	90.39	(79)
Southwest _{0.9x}	0.77	×	1.59	×	119.01]	0.5	x	0.8	=	52.45	(79)
Southwest _{0.9x}	0.77	×	2.92	×	119.01]	0.5	x	0.8	=	96.33	(79)
Southwest _{0.9x}	0.54	×	13.23	×	119.01]	0.5	x	0.8	=	306.08	(79)
Southwest _{0.9x}	0.77	×	2.74	×	118.15]	0.5	x	0.8	=	89.74	(79)
Southwest _{0.9x}	0.77	×	1.59	x	118.15		0.5	x	0.8	=	52.07	(79)

Southwesto as 0.54 × 13.23 × 118.15 0.5 × 0.8 = 03.87 (79) Southwesto as 0.77 × 2.74 × 113.91 0.5 × 0.8 = $0.62.$ (79) Southwesto as 0.77 × 2.74 × 113.91 0.5 × 0.8 = 0.22 (79) Southwesto as 0.77 × 2.74 × 113.91 0.5 × 0.8 = 0.22 (79) Southwesto as 0.77 × 2.74 × 113.91 0.5 × 0.8 = 0.22 (79) Southwesto as 0.77 × 2.74 × 110.391 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × 104.39 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × 104.39 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × $0.04.39$ 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × $0.04.39$ 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.22.79$ Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.228.49$ (79) Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.228.49$ (79) Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.74 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.24 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.24 × 0.225 0.5 × 0.8 = $0.26.9$ (79) Southwesto as 0.77 × 2.24 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.24 × 0.225 0.5 × 0.8 = $0.226.9$ (79) Southwesto as 0.77 × 2.24 × 0.225 0.5 × 0.8 = $0.26.179$ Southwesto as 0.77 × 2.24 × 0.275 0.5 × 0.8 = $0.26.179$ Southwesto as 0.77 × 2.24 × 0.225 × 0.5 × 0.8 = $0.226.179$ Southwesto as 0.77 × 2.24 × 0.225 × 0.5 × 0.8 = $0.226.179$ Southwesto as 0.77 × 2.24 × $0.24.79$ 0.5 × 0.8 = $0.226.179$ Southwesto as 0.77 × 2.24 × $0.24.79$ 0.5 × 0.8 = $0.26.179$ Southwesto as 0.77 × 2.24 × $0.24.79$ 0.5 × 0.8 = $0.226.179$ Southwesto as 0.77 × 2.24 × $0.24.97$ 0.5 × 0.8 = $0.226.179$ Southwesto as 0.77 × 0.222 × $0.24.97$ 0.5 × 0.8 = $0.226.179$	Couthurson	4				г			1			-					-
Southwesto 3: Southwesto 3: South		0.11	×	2.9	2	×L	1	18.15			0.5	×	0.8		=	95.63	(79)
Southwesto at $0, x$ $0, 77$ x 292 x 113.91 0.5 x 0.8 $=$ 60.21 (7) Southwesto $0, x$ 0.64 x 12.23 x 113.91 0.5 x 0.8 $=$ 92.2 (79) Southwesto $0, x$ 0.77 x 292 x 104.39 0.5 x 0.8 $=$ 79.29 (79) Southwesto $0, x$ 0.77 x 274 x 104.39 0.5 x 0.8 $=$ 79.29 (79) Southwesto $0, x$ 0.77 x 224 x 104.39 0.5 x 0.8 $=$ 79.29 (79) Southwesto $0, x$ 0.77 x 222 x 104.39 0.5 x 0.8 $=$ 79.29 (79) Southwesto $0, x$ 0.77 x 222 x 104.39 0.5 x 0.8 $=$ 79.29 (79) Southwesto $0, x$ 0.77 x 222 x 104.39 0.5 x 0.8 $=$ 46.01 (79) Southwesto $0, x$ 0.77 x 222 x 104.39 0.5 x 0.8 $=$ 70.52 (79) Southwesto $0, x$ 0.77 x 227 x 922.85 0.5 x 0.8 $=$ 70.52 (79) Southwesto $0, x$ 0.77 x 227 x 922.85 0.5 x 0.8 $=$ 70.52 (79) Southwesto $0, x$ 0.77 x 227 x 922.85 0.5 x 0.8 $=$ 223.81 (79) Southwesto $0, x$ 0.77 x 2274 x 922.85 0.5 x 0.8 $=$ 238.81 (79) Southwesto $0, x$ 0.77 x 222 x 892.7 0.5 x 0.8 $=$ 238.81 (79) Southwesto $0, x$ 0.77 x 227 x 892.7 0.5 x 0.8 $=$ 238.81 (79) Southwesto $0, x$ 0.77 x 227 x 892.7 0.5 x 0.8 $=$ 30.53 (79) Southwesto $0, x$ 0.77 x 227 x 4407 0.5 x 0.8 $=$ 172.16 (79) Southwesto $0, x$ 0.77 x 2292 x 892.7 0.5 x 0.8 $=$ 113.25 (79) Southwesto $0, x$ 0.77 x 2292 x 4407 0.5 x 0.8 $=$ 113.25 (79) Southwesto $0, x$ 0.77 x 2292 x 4407 0.5 x 0.8 $=$ 113.25 (79) Southwesto $0, x$ 0.77 x 2292 x 4407 0.5 x 0.8 $=$ 23.92 (79) Southwesto $0, x$ 0.77 x 2292 x 31.40 0.5 x 0.8 $=$ 23.92 (79) Southwesto $0, x$ 0.77 x 2292 x 31.40 0.5 x 0.8 $=$ 23.92 (79) Southwesto $0, x$ 0.77 x 2292 x 31.40 0.5 x 0.8 $=$ 23.92 (79) Southwesto $0, 0.77$ x 2.92 x 31.40 0.5 x 0.8 $=$ 23.92			×	13.	23	×	1	18.15			0.5	×	0.8		=	303.87	(79)
Southwesto as 0.77 × 2.92 × (113.91) 0.5 × 0.8 = 292.96 (79) Southwesto as 0.77 × 2.74 × 104.39 0.5 × 0.8 = 72.2 (79) Southwesto as 0.77 × 2.74 × 104.39 0.5 × 0.8 = 292.96 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 46.01 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 46.01 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 46.01 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 208.48 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 208.48 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.841 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 33.47 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 33.47 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto as 0.77 × 1.59 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto as 0.77 × 1.59 × 31.49 0.5 × 0.8 = 25.40 (79) Southwesto as 0.77 × 1.59 × 10.92 1 0.27 1 0.5 × 0.8 = 25.40 (79) Southwesto as 0.77 × 1.59 × 10.97 10.98 30.90 30.98 80.341 52.7 7.7 88.7 83.9 83.9 83.91		•	x	2.7	'4	×	1	13.91			0.5	x	0.8		=	86.52	(79)
Southwesto as 0.54 × 13.23 × 13.91 0.5 × 0.8 = 292.92 (79) Southwesto as 0.77 × 1.59 × 104.39 0.5 × 0.8 = 46.01 (78) Southwesto as 0.77 × 1.59 × 104.39 0.5 × 0.8 = 46.01 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 266.48 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 266.48 (79) Southwesto as 0.77 × 2.92 × 104.39 0.5 × 0.8 = 70.52 (79) Southwesto as 0.77 × 2.92 × 22.85 0.5 × 0.8 = 70.52 (79) Southwesto as 0.77 × 2.92 × 22.85 0.5 × 0.8 = 70.52 (79) Southwesto as 0.77 × 2.92 × 22.85 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.92 × 22.85 0.5 × 0.8 = 70.52 (79) Southwesto as 0.77 × 2.92 × 22.85 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.92 × 82.85 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.74 × 68.27 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.74 × 68.27 0.5 × 0.8 = 52.61 (79) Southwesto as 0.77 × 2.92 × 89.27 0.5 × 0.8 = 75.16 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 173.15 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 173.15 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 113.25 (79) Southwesto as 0.77 × 2.92 × 44.07 0.5 × 0.8 = 113.25 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 113.25 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 113.26 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.77 × 2.92 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.54 × 13.23 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.54 × 13.23 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.54 × 13.23 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.54 × 13.23 × 31.49 0.5 × 0.8 = 2.322 (79) Southwesto as 0.54 × 0.563 × 0.8 = 2.322 (79) Southwesto as 0.54 × 0.323 0.54 0.563 0.56 0.56 0.66	Southwes	t <mark>0.9x</mark> 0.77	x	1.5	9	×	1	13.91			0.5	×	0.8		=	50.21	(79)
Southwesto as 0.77 × 2.74 × 104.39 0.5 × 0.8 = 72.29 (°F) Southwesto as 0.77 × 2.24 × 104.39 0.5 × 0.8 = 46.01 (°9) Southwesto as 0.77 × 2.24 × 104.39 0.5 × 0.8 = 46.01 (°9) Southwesto as 0.77 × 2.24 × 104.39 0.5 × 0.8 = 226.46 (°9) Southwesto as 0.77 × 2.24 × 292 × 104.39 0.5 × 0.8 = 226.48 (°9) Southwesto as 0.77 × 2.74 × 292 × 292.85 0.5 × 0.8 = 40.92 (°9) Southwesto as 0.77 × 2.74 × 292 × 292.85 0.5 × 0.8 = 40.92 (°9) Southwesto as 0.77 × 2.24 × 292.85 0.5 × 0.8 = 223.81 (°9) Southwesto as 0.77 × 2.24 × 892.85 0.5 × 0.8 = 223.81 (°9) Southwesto as 0.77 × 2.24 × 892.85 0.5 × 0.8 = 223.81 (°9) Southwesto as 0.77 × 2.24 × 892.85 0.5 × 0.8 = 233.81 (°9) Southwesto as 0.77 × 2.24 × 892.7 0.5 × 0.8 = 233.81 (°9) Southwesto as 0.77 × 2.24 × 892.7 0.5 × 0.8 = 233.81 (°9) Southwesto as 0.77 × 2.24 × 892.7 0.5 × 0.8 = 233.81 (°9) Southwesto as 0.77 × 2.24 × 892.7 0.5 × 0.8 = 30.53 (°9) Southwesto as 0.77 × 2.24 × 4407 0.5 × 0.8 = 173.17 (°9) Southwesto as 0.77 × 2.24 × 4407 0.5 × 0.8 = 13.42 (°9) Southwesto as 0.77 × 2.24 × 4407 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 13.23 × 4407 0.5 × 0.8 = 13.26 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 25.49 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 25.49 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 25.49 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 25.49 (°9) Southwesto as 0.77 × 2.24 × 31.49 0.5 × 0.8 = 25.49 (°9) Southwesto as 0.64 × 13.23 ×	Southwes	t <mark>0.9x</mark> 0.77	x	2.9	2	×	1	13.91			0.5	x	0.8		=	92.2	(79)
Southwesto g_{x} 0.77 × 2.92 × 104.39 0.5 × 0.8 = 46.01 (7) Southwesto g_{x} 0.77 × 2.92 × 104.39 0.5 × 0.8 = 268.49 (7) Southwesto g_{x} 0.77 × 2.74 × 32.85 0.5 × 0.8 = 276.24 (7) Southwesto g_{x} 0.77 × 2.74 × 32.85 0.5 × 0.8 = 70.52 (7) Southwesto g_{x} 0.77 × 2.92 × 32.85 0.5 × 0.8 = 75.16 (7) Southwesto g_{x} 0.77 × 2.92 × 32.85 0.5 × 0.8 = 238.81 (7) Southwesto g_{x} 0.77 × 2.92 × 32.85 0.5 × 0.8 = 238.81 (7) Southwesto g_{x} 0.77 × 2.92 × 39.265 0.5 × 0.8 = 238.81 (7) Southwesto g_{x} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 238.81 (7) Southwesto g_{x} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 30.53 (7) Southwesto g_{x} 0.77 × 2.92 × 69.27 0.5 × 0.8 = 30.53 (7) Southwesto g_{x} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 33.47 (7) Southwesto g_{x} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 33.47 (7) Southwesto g_{x} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 134.47 (7) Southwesto g_{x} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 134.47 (7) Southwesto g_{x} 0.77 × 2.92 × 44.07 0.5 × 0.8 = 134.47 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.47 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.87 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.87 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.87 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.87 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.98 (7) Southwesto g_{x} 0.77 × 2.92 × 34.407 0.5 × 0.8 = 134.88 (7) Southwesto g_{x}	Southwes	t <mark>0.9x</mark> 0.54	x	13.	23	x [1	13.91			0.5	×	0.8		=	292.96	(79)
Southwesto so 0.77 x 2.92 x 104.39 0.5 x 0.8 = 44.5 (79) Southwesto so 0.54 x 13.23 x 104.39 0.5 x 0.8 = 268.48 (79) Southwesto so 0.77 x 2.74 x 32.85 0.5 x 0.8 = 70.52 (79) Southwesto so 0.77 x 2.92 x 32.85 0.5 x 0.8 = 40.32 (79) Southwesto so 0.77 x 2.92 x 32.85 0.5 x 0.8 = 40.32 (79) Southwesto so 0.77 x 2.92 x 32.85 0.5 x 0.8 = 40.32 (79) Southwesto so 0.77 x 2.92 x 32.85 0.5 x 0.8 = 233.81 (79) Southwesto so 0.77 x 2.92 x 69.27 0.5 x 0.8 = 233.81 (79) Southwesto so 0.77 x 2.92 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto so 0.77 x 2.92 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto so 0.77 x 2.92 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto so 0.77 x 2.92 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.347 (79) Southwesto so 0.54 x 13.23 x 44.07 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 44.07 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 44.07 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto so 0.54 x 13.23 x 31.49 0.5 x 0.8 = 21.856 155.32 (83) Total gains – internal and solar (H4/m e (73)m + (83)m , mattic (84)m e45.32 (75.5	Southwes	t <mark>0.9x</mark> 0.77	x	2.7	'4	×	1(04.39			0.5	×	0.8		=	79.29	(79)
Southwesto sk 0.54 x 13.23 x 104.39 0.5 x 0.8 = 268.48 (79) Southwesto sk 0.77 x 2.74 x 92.85 0.5 x 0.8 = 70.52 (79) Southwesto sk 0.77 x 1.59 x 92.85 0.5 x 0.8 = 40.92 (79) Southwesto sk 0.77 x 2.92 x 92.85 0.5 x 0.8 = 75.16 (79) Southwesto sk 0.77 x 2.92 x 92.85 0.5 x 0.8 = 75.16 (79) Southwesto sk 0.77 x 2.74 x 66.27 0.5 x 0.8 = 238.61 (79) Southwesto sk 0.77 x 2.74 x 66.27 0.5 x 0.8 = 238.61 (79) Southwesto sk 0.77 x 2.92 x 66.27 0.5 x 0.8 = 238.61 (79) Southwesto sk 0.77 x 2.92 x 66.27 0.5 x 0.8 = 30.53 (79) Southwesto sk 0.77 x 2.92 x 66.27 0.5 x 0.8 = 66.07 (79) Southwesto sk 0.77 x 2.92 x 66.27 0.5 x 0.8 = 178.15 (79) Southwesto sk 0.77 x 2.92 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto sk 0.77 x 2.74 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto sk 0.77 x 2.74 x 44.07 0.5 x 0.8 = 13.34 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 13.34 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.82 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.26 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.26 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.82 (79) Southwesto sk 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.82 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.82 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.57 x 0.54 x 0.32 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto sk 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.69 (79)	Southwes	t <mark>0.9x</mark> 0.77	x	1.5	9	×	1(04.39			0.5	x	0.8		=	46.01	(79)
Southwesto g_{1} 0.77 × 2.74 × 92.85 0.5 × 0.8 = 70.52 (79) Southwesto g_{2} 0.77 × 1.59 × 92.85 0.5 × 0.8 = 40.92 (79) Southwesto g_{2} 0.77 × 2.92 × 92.85 0.5 × 0.8 = 23.88 (79) Southwesto g_{2} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 52.61 (79) Southwesto g_{2} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 30.63 (79) Southwesto g_{2} 0.77 × 2.92 × 69.27 0.5 × 0.8 = 30.63 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 178.15 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 30.63 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 19.42 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 30.63 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 30.63 (79) Southwesto g_{2} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 31.33 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 31.42 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 30.67 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 30.67 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 30.67 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 30.67 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 40.82 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto g_{2} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto g_{2} 0.77 × 0.55 (68.21 631.23 66.45 485.93 351.06 218.96 156.32 (79) Southwesto g_{2} 0.77 × 0.55 (68.9 (66) Mean internal temperature (heating season) Temperature during heating seriods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1, m (see Table 9a) (60) Mean internal temperature in living area, h1, m (see Table 9a) (61) Mean internal temperature in living area from Table 9, Th1 (°C) (62) (63) Mean internal temperature in living area from Table 9, Th2 (°C) (68) Mean internal temperature in living area from Table 9, Th2 (°C) (68) Mean internal temperature in living area from Table 9, Th2 (°C) (68) Mean internal temperature in living area for m Table 9, Th2 (°C) (68) Mean internal temper	Southwes	t <mark>0.9x</mark> 0.77	x	2.9	2	×	1(04.39			0.5	x	0.8		=	84.5	(79)
Southwesto \mathfrak{s}_{0} 0.77 × 1.59 × 92.85 0.5 × 0.8 = 40.92 (7) Southwesto \mathfrak{s}_{0} 0.77 × 2.82 × 92.85 0.5 × 0.8 = 76.16 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 238.81 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 69.27 0.5 × 0.8 = 30.53 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.24 × 69.27 0.5 × 0.8 = 30.53 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.24 × 69.27 0.5 × 0.8 = 30.53 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.24 × 69.27 0.5 × 0.8 = 30.53 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 33.47 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 178.15 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 33.47 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 19.42 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 19.42 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 113.36 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.32 × 31.49 0.5 × 0.8 = 13.38 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.32 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.52 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto \mathfrak{s}_{0} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 25.49 (79) Southwesto \mathfrak{s}_{0} 0.77 × 0.57 × 0.58 0.8 (84) (79) Southwesto \mathfrak{s}_{0} 0.77 × 0.59 × 0.59 (05.57 0.68) 0.8 (90) Southwesto \mathfrak{s}_{0} 0.77 × 0.52 (10.21) 0.51 0.51 0.68 0.8 (84) (79) Southwesto \mathfrak{s}_{0} 0.77 × 0.52 (10.21) 0.51 0.51 0.68 0.8 (65.98 (64) Themperature during heating second Themperature during heating second Themperature during heating second Themperature during heating second Themperature during heating second in the living area from Table 9, Th1 (°C) Utilisation factor for gains for living area, h1, m (see Table 9a) Mean internal temperature in living area 110 (50) 0.58 0.68 0.68 0.69 0.60 0.60 (66) Mean internal temperature in living area 110 (00) steps 3 to 7 in T	Southwes	t <mark>0.9x</mark> 0.54	x	13.	23	×	1(04.39			0.5	×	0.8		=	268.48	(79)
Southwesto, at 0.77 x 2.92 x 92.85 0.5 x 0.8 = 75.16 (79) Southwesto, at 0.54 x 13.23 x 92.85 0.5 x 0.8 = 238.81 (79) Southwesto, at 0.77 x 2.74 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto, at 0.77 x 2.92 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto, at 0.77 x 2.92 x 69.27 0.5 x 0.8 = 178.15 (79) Southwesto, at 0.77 x 2.92 x 69.27 0.5 x 0.8 = 178.15 (79) Southwesto, at 0.77 x 2.92 x 69.27 0.5 x 0.8 = 178.15 (79) Southwesto, at 0.77 x 2.74 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto, at 0.77 x 1.59 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto, at 0.77 x 1.59 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto, at 0.77 x 1.59 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto, at 0.77 x 1.59 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto, at 0.77 x 2.74 x 31.49 0.5 x 0.8 = 113.35 (79) Southwesto, at 0.77 x 2.74 x 31.49 0.5 x 0.8 = 13.88 (79) Southwesto, at 0.77 x 1.59 x 31.49 0.5 x 0.8 = 13.88 (79) Southwesto, at 0.77 x 2.92 x 31.49 0.5 x 0.8 = 2549 (79) Southwesto, at 0.77 x 2.92 x 31.49 0.5 x 0.8 = 2549 (79) Southwesto, at 0.77 x 2.92 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto, at 0.77 x 2.92 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto, at 0.54 x 13.23 x 31.49 0.5 x 0.8 = 2549 (79) Southwesto, at 0.54 x 13.23 x 31.49 0.5 x 0.8 = 2549 (79) Southwesto, at 0.54 x 13.23 x 0.31 90.09 93.056 96.341 752.76 64.54 96.598 (84) Chaen internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (65) Utilisation factor for gains for living area, h1, m (see Table 9a) (66) mage 0.93 0.89 0.82 0.77 2 0.58 0.46 0.50 0.80 0.80 0.80 0.96 (86) Mean internal temperature in living area 11 (follow steps 3 to 7 in Table 9, Th2 (°C) (80) mage 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (82) Utilisation factor for gains for re	Southwes	t <mark>0.9x</mark> 0.77	x	2.7	'4	×	9	2.85			0.5	×	0.8		=	70.52	(79)
Southwesto 9x 0.54 x 13.23 x 92.85 0.5 x 0.8 = 238.81 (7) Southwesto 9x 0.77 x 2.74 x 69.27 0.5 x 0.8 = 25.61 (79) Southwesto 9x 0.77 x 1.59 x 69.27 0.5 x 0.8 = 30.53 (79) Southwesto 9x 0.77 x 2.92 x 69.27 0.5 x 0.8 = 56.07 (79) Southwesto 9x 0.77 x 2.74 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto 9x 0.77 x 2.74 x 44.07 0.5 x 0.8 = 13.47 (79) Southwesto 9x 0.77 x 2.74 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto 9x 0.77 x 2.92 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto 9x 0.77 x 2.92 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto 9x 0.77 x 2.92 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto 9x 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.88 (79) Southwesto 9x 0.77 x 2.92 x 44.07 0.5 x 0.8 = 13.88 (79) Southwesto 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9x 0.77 x 1.59 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.77 x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.77 x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Southwesto 9x 0.54 x 13.23 x 0.149 0.5 x 0.8 = 80.98 (79) Mean internal and solar (84)m = (73)m + (83)m, watts (84)m 64.532 75.75 88.78 90.59 105.257 103.21 90.09 93.56 85.31 75.76 648.54 605.98 (84) Themperature during heating periods in the living area from Table 9 , Th1 (°C) Utilisation factor for gains for living area 11 (follow steps 3 to 7 in Table 9c) (87)m 18.91 18.91 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling from Table 9, Th2 (°C) (88)m 19.91 19.91 19.91 19.9	Southwes	t <mark>0.9x</mark> 0.77	x	1.5	9	×	9	2.85			0.5	×	0.8		=	40.92	(79)
Southwesto $g_{X} = 0.77$ x 2.74 x 69.27 0.5 x 0.8 = 52.61 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 69.27 0.5 x 0.8 = 560.7 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 69.27 0.5 x 0.8 = 560.7 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 69.27 0.5 x 0.8 = 178.15 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 44.07 0.5 x 0.8 = 192.7 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 44.07 0.5 x 0.8 = 194.2 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 44.07 0.5 x 0.8 = 194.2 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 113.35 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 113.35 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 13.38 (79) Southwesto $g_{X} = 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.77$ x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ x 13.29 0.54 x 0.525 $0.56.37$ 0.58 0.6 $0.50.6$ 0.59 0.64 0.59 0.64 0.59 0.64 0.59 0.64 0.59 0.64	Southwes	t <mark>0.9x</mark> 0.77	x	2.9	2	×	9	2.85	İ		0.5	×	0.8		=	75.16	(79)
Southwesto $gx = 0.77$ x 1.59 x 69.27 0.5 x 0.8 = 0.65 (79) Southwesto $gx = 0.77$ x 2.24 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto $gx = 0.77$ x 2.74 x 44.07 0.5 x 0.8 = 178.15 (79) Southwesto $gx = 0.77$ x 2.74 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto $gx = 0.77$ x 2.92 x 44.07 0.5 x 0.8 = 19.42 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 13.35 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 13.35 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 13.35 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 113.35 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 13.38 (79) Southwesto $gx = 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 13.88 (79) Southwesto $gx = 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 13.88 (79) Southwesto $gx = 0.77$ x 1.59 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.77$ x 1.59 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.77$ x 1.32 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.54$ x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 = 25.49 (79) Southwesto $gx = 0.57$ x 0.8 (83) = 20.64 (84) (90) (80)m 18.21 21	Southwes	t <mark>0.9x</mark> 0.54	x	13.	23	×	9	2.85	İ		0.5	×	0.8		=	238.81	(79)
Southwesto $g_{X} = 0.77$ × 2.92 × 4.07 Southwesto $g_{X} = 0.5$ × 0.8 = 56.07 (79) Southwesto $g_{X} = 0.57$ × 0.8 = 176.15 (79) Southwesto $g_{X} = 0.77$ × 2.74 × 44.07 0.5 × 0.8 = 176.15 (79) Southwesto $g_{X} = 0.77$ × 1.59 × 44.07 0.5 × 0.8 = 19.42 (79) Southwesto $g_{X} = 0.77$ × 2.92 × 44.07 0.5 × 0.8 = 19.42 (79) Southwesto $g_{X} = 0.77$ × 2.92 × 44.07 0.5 × 0.8 = 113.35 (79) Southwesto $g_{X} = 0.77$ × 2.74 × 31.49 0.5 × 0.8 = 13.88 (79) Southwesto $g_{X} = 0.77$ × 2.74 × 31.49 0.5 × 0.8 = 13.88 (79) Southwesto $g_{X} = 0.77$ × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwesto $g_{X} = 0.77$ × 2.92 × 31.49 0.5 × 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwesto $g_{X} = 0.54$ × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Solar gains in watts, calculated for each month (83)m = Sun(74)m(82)m (83)m = 182.12 314.71 442.55 568.37 654.9 658.21 631.23 565.45 485.93 351.05 218.95 155.32 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m = 645.32 775.75 888.78 990.59 1052.57 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) 7.44 7.575 888.78 990.59 1052.57 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) 7.44 1.41 1.59 1.8.92 1.9.4 1.9.6 20.44 20.77 20.91 20.89 20.64 20 1.9.2 1.8.54 (67) Temperature during heating periods in the living area from Table 9. Th1 (°C) Utilisation factor for gains for living area T1 (follow steps 3 to 7 in Table 9c) (87)m 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (67) Temperature during heating periods in rest of dwelling from Table 9. Th2 (°C) (88)m 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling from Table 9. Th2 (°C) (89)m 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 (89)	Southwes	t <mark>0.9x</mark> 0.77	x	2.7	'4	×	6	9.27	İ		0.5	×	0.8		=	52.61	(79)
Southwest _{0.94} 0.54 × 13.23 × 69.27 0.5 × 0.8 = 178.15 (79) Southwest _{0.94} 0.77 × 2.74 × 44.07 0.5 × 0.8 = 19.42 (79) Southwest _{0.94} 0.77 × 2.92 × 44.07 0.5 × 0.8 = 19.42 (79) Southwest _{0.94} 0.77 × 2.92 × 44.07 0.5 × 0.8 = 113.35 (79) Southwest _{0.94} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 113.35 (79) Southwest _{0.94} 0.77 × 2.74 × 31.49 0.5 × 0.8 = 23.92 (79) Southwest _{0.94} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 13.88 (79) Southwest _{0.94} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 23.92 (79) Southwest _{0.94} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.77 × 2.92 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.54 × 13.23 × 31.49 0.5 × 0.8 = 25.49 (79) Southwest _{0.94} 0.55 × 0.8 = 25.49 (79) Southwest _{0.94} 0.55 × 0.8 = 25.49 (79) Southwest _{0.94} 0.55 × 0.8 = 25.49 (79) Southwest _{0.94} 0.55 × 0.8 = 25.49 (79) Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Wean internal temperature in living area 11 (follow steps 3 to 7 in Table 9c) (67)m 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m 19.91 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest o	Southwes	t <mark>0.9x</mark> 0.77	x	1.5	9	× [6	9.27	İ		0.5	_ ×	0.8		=	30.53	(79)
Southwesto g_{x} 0.77 x 2.92 x 44.07 0.5 x 0.8 = 33.47 (7) Southwesto g_{x} 0.77 x 2.92 x 44.07 0.5 x 0.8 = 33.47 (7) Southwesto g_{x} 0.77 x 2.92 x 44.07 0.5 x 0.8 = 33.47 (7) Southwesto g_{x} 0.77 x 2.92 x 44.07 0.5 x 0.8 = 35.67 (7) Southwesto g_{x} 0.54 x 13.23 x 44.07 0.5 x 0.8 = 35.67 (7) Southwesto g_{x} 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (7) Southwesto g_{x} 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (7) Southwesto g_{x} 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.92 (7) Southwesto g_{x} 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Southwesto g_{x} 0.54 x 13.23 (64.9 65.12 631.23 566.45 46.99 (68.91 65.32 (63) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m = [45.32 775.75 88.76 930.50 1052.57 1032.31 90.09 930.56 86.31 752.76 648.54 605.98 (64) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (65) Utilisation factor for gains for living area, h1,m (see Table 9a) (67)m = 18.59 18.32 19.4 19.36 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (67) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m = 19.91 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 (9.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Southwes	t <mark>0.9x</mark> 0.77	x	2.9	2	×Г	6	9.27	i		0.5	×	0.8		=	56.07	(79)
Southwesto 9, 0.77 x 1.59 x 4407 0.5 x 0.8 = 19.42 (79) Southwesto 9, 0.77 x 2.92 x 4407 0.5 x 0.8 = 35.67 (79) Southwesto 9, 0.54 x 13.23 x 4407 0.5 x 0.8 = 113.35 (79) Southwesto 9, 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto 9, 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto 9, 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Southwesto 9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m = 182.12 314.71 442.55 568.37 654.9 658.21 631.23 565.45 485.93 351.05 218.95 155.32 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m = 645.32 775.75 88.78 99.59 1052.57 1032.31 99.00 930.56 863.41 752.76 648.54 605.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) 66 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (67)m = 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (67) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m = 19.91 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (98) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Southwes	t <mark>0.9x</mark> 0.54	×	13.	23	×「	6	9.27	İ		0.5	×	0.8		=	178.15	(79)
Southwesto, 9x 0.77 x 2.92 x 4407 0.5 x 0.a = 35.67 (79) Southwesto, 9x 0.54 x 13.23 x 4407 0.5 x 0.8 = 113.35 (79) Southwesto, 9x 0.77 x 2.74 x 31.49 0.5 x 0.8 = 113.35 (79) Southwesto, 9x 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto, 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto, 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto, 9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 23.92 (79) Southwesto, 9x 0.54 x 13.23 56.45 485.93 351.05 218.95 155.32 (83) </td <td>Southwes</td> <td>t<mark>0.9x</mark> 0.77</td> <td>x</td> <td>2.7</td> <td>'4</td> <td>×「</td> <td>4</td> <td>4.07</td> <td>1</td> <td></td> <td>0.5</td> <td>۲ × آ</td> <td>0.8</td> <td></td> <td>=</td> <td>33.47</td> <td>(79)</td>	Southwes	t <mark>0.9x</mark> 0.77	x	2.7	'4	×「	4	4.07	1		0.5	۲ × آ	0.8		=	33.47	(79)
Southwestq.9, $9, 0.77$ x 2.92 x 44.07 0.5 x 0.8 = 35.67 (7) Southwestq.9, $9, 0.54$ x 13.23 x 44.07 0.5 x 0.8 = 113.35 (7) Southwestq.9, $9, 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 113.35 (7) Southwestq.9, $9, 0.77$ x 2.74 x 31.49 0.5 x 0.8 = 23.92 (7) Southwestq.9, 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (7) Southwestq.9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Southwestq.9, 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (7) Solar gains in watts, calculated for each month (63)m = Sum(74)m(62)m (68)m (64)m = 64.5.21 (7), m (63)m = Sum(74)m(62)m (68)m (64)m =	Southwes	t <mark>0.9x</mark> 0.77	x	1.5	9	хГ	4	4.07			0.5	×	0.8		=	19.42	(79)
Southwest0.9x 0.54 x 13.23 x 44.07 0.5 x 0.8 = 113.35 (79) Southwest0.9x 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwest0.9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.92 (79) Southwest0.9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 23.92 (79) Southwest0.9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0.9x 0.54 x 13.23 856.45 485.93 351.05 218.95 155.32 (63) Solar gains in watts, calculated for each month $(83)m = Sum(74)m(82)m$ $(82)m$ $(84)m = (73)m + (83)m$, watts $(84)m = (75)m + (83)m$, watts $(84)m = (75.75, 75, 888.78) 90.59 1052.57 1032.31 90.09 930.56 863.41 $	Southwes	ta a	x	2.9	2	хГ	4	4.07			0.5	×	0.8		=	35.67	(79)
Southwest0, 9x 0.77 x 2.74 x 31.49 0.5 x 0.8 = 23.92 (79) Southwest0, 9x 0.77 x 1.59 x 31.49 0.5 x 0.8 = 23.92 (79) Southwest0, 9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, 9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, 9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Southwest0, 9x 0.54 x 13.23 565.45 485.93 351.05 218.95 155.32 (63) Total gains - internal and solar (84)m = (73)m + (83)m, watts (84)m = 645.32 775.78 88.78 90.59 1052.57 1032.31 90.09 930.56 863.41 752.76 648.54 605.98 (64)	Southwes	·	x			×Г			1		0.5	۲ × ۲			_		(79)
Southwest0, $9x$ 0.77 x 1.59 x 31.49 0.5 x 0.8 = 13.88 (79) Southwest0, $9x$ 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, $9x$ 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, $9x$ 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, $9x$ 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, $9x$ 0.54 x 13.23 31.49 0.5 x 0.8 = 25.49 (79) Southwest0, $9x$ 0.55 x 0.8 $0.512.57$ 0.83 $0.512.57$ 0.58 $0.645.54$ 485.93 351.05 218.95 155.32 (83) Temperature during hea	Southwes	t <mark>0.9x</mark> 0.77	x	2.7	'4	хГ	3	1.49			0.5	۲ × ۲			_		=
Southwesto.9x 0.77 x 2.92 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto.9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto.9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto.9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto.9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 25.49 (79) Southwesto.9x 0.55 x 0.83 x 31.49 0.55 x 0.82 0.72 (83) $0.51.25$ (83) $0.52.57$ 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85)	Southwes	·	x			хГ						۲ × ۲			_		(79)
Southwest0,9x 0.54 x 13.23 x 31.49 0.5 x 0.8 = 80.98 (79) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m = 182.12 314.71 442.55 568.37 654.9 658.21 631.23 565.45 485.93 351.05 218.95 155.32 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m = 645.32 775.75 888.78 990.59 1052.57 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m 19.91 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Southwes	4 L	x			хГ			1			۲ × ۲			=		=
Solar gains in watts, calculated for each month (83)m = Sum(74)m(62)m (83)m = 182.12 314.71 442.55 568.37 654.9 658.21 631.23 565.45 485.93 351.05 218.95 155.32 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m = 645.32 775.75 888.78 990.59 1052.57 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Man Apr May Jun Jul Aug Sep Oct Nov Dec (86)m = 0.96 0.93 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m = 18.59 18.92 19.4 19.92 19.92 19.92 19.92 19.92 18.92 19.92 (87) Tempe	Southwes					F]			4			_		
$ \begin{array}{c} (83)m= & 182.12 & 314.71 & 442.55 & 568.37 & 654.9 & 658.21 & 631.23 & 565.45 & 485.93 & 351.05 & 218.95 & 155.32 \\ \hline \text{Total gains} - \text{internal and solar } (84)m = (73)m + (83)m , watts \\ \hline (84)m= & 645.32 & 775.75 & 888.78 & 990.59 & 1052.57 & 1032.31 & 990.09 & 930.56 & 863.41 & 752.76 & 648.54 & 605.98 \\ \hline \textbf{Mean internal temperature (heating season)} \\ \hline \textbf{Temperature during heating periods in the living area from Table 9, Th1 (°C) \\ \hline \textbf{Utilisation factor for gains for living area, h1,m (see Table 9a)} \\ \hline \textbf{Mean internal temperature in living area, h1,m (see Table 9a)} \\ \hline \textbf{Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)} \\ \hline (87)m= & 18.59 & 18.92 & 19.4 & 19.96 & 20.44 & 20.77 & 20.91 & 20.89 & 20.64 & 20 & 19.2 & 18.54 \\ \hline Mean internal temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) \\ \hline (88)m= & 19.91 & 19.91 & 19.91 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 \\ \hline \textbf{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) \\ \hline \textbf{Metan internal temperature form the there are there are the there are there are there are the there$		0.01				L			J		0.0		0.0			00.00	
$ \begin{array}{c} (83)m= & 182.12 & 314.71 & 442.55 & 568.37 & 654.9 & 658.21 & 631.23 & 565.45 & 485.93 & 351.05 & 218.95 & 155.32 \\ \hline \text{Total gains} - \text{internal and solar } (84)m = (73)m + (83)m , watts \\ \hline (84)m= & 645.32 & 775.75 & 888.78 & 990.59 & 1052.57 & 1032.31 & 990.09 & 930.56 & 863.41 & 752.76 & 648.54 & 605.98 \\ \hline \textbf{Mean internal temperature (heating season)} \\ \hline \textbf{Temperature during heating periods in the living area from Table 9, Th1 (°C) \\ \hline \textbf{Utilisation factor for gains for living area, h1,m (see Table 9a)} \\ \hline \textbf{Mean internal temperature in living area, h1,m (see Table 9a)} \\ \hline \textbf{Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)} \\ \hline (87)m= & 18.59 & 18.92 & 19.4 & 19.96 & 20.44 & 20.77 & 20.91 & 20.89 & 20.64 & 20 & 19.2 & 18.54 \\ \hline Mean internal temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) \\ \hline (88)m= & 19.91 & 19.91 & 19.91 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 & 19.92 \\ \hline \textbf{Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) \\ \hline \textbf{Metan internal temperature form the there are there are the there are there are there are the there$	Solar gai	ns in watts, ca	alculated	l for eac	n month	1			(83)m	1 = SI	um(74)m	(82)m					
(84)m= 645.32 775.75 888.78 990.59 1052.57 1032.31 990.09 930.56 863.41 752.76 648.54 605.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88) (88) (88) (87) (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) 19.92 19.92 19.	Ŭ,			î		-	8.21		<u> </u>		<u> </u>			155	.32		(83)
7. Mean internal temperature (heating season)Temperature during heating periods in the living area from Table 9, Th1 (°C)21Utilisation factor for gains for living area, h1,m (see Table 9a)Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec(86)m=0.960.930.890.820.720.580.460.50.680.860.940.96(86)Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)(87)m=18.5918.9219.419.9620.4420.7720.9120.8920.642019.218.54(87)Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)(88)m=19.9119.9119.9219.9219.9219.9219.9219.9219.9219.92(88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	Total gair	ns – internal a	ind sola	r (84)m =	= (73)m	+ (8	3)m	, watts			I					1	
Temperature during heating periods in the living area from Table 9, Th1 (°C)21(85)Utilisation factor for gains for living area, h1,m (see Table 9a)JanFebMarAprMayJunJulAugSepOctNovDec(86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86)Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)(87)m=18.5918.9219.419.9620.4420.7720.9120.8920.642019.218.54(87)Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)(88)m=19.9119.9119.9219.9219.9219.9219.9219.9219.92(88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	(84)m= 6	45.32 775.75	888.78	990.59	1052.57	103	32.31	990.09	930	.56	863.41	752.7	6 648.54	605	.98		(84)
Temperature during heating periods in the living area from Table 9, Th1 (°C)21(85)Utilisation factor for gains for living area, h1,m (see Table 9a)JanFebMarAprMayJunJulAugSepOctNovDec(86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86)Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)(87)m=18.5918.9219.419.9620.4420.7720.9120.8920.642019.218.54(87)Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)(88)m=19.9119.9119.9219.9219.9219.9219.9219.9219.92(88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	7 Mean	internal temr	erature	(heating	seasor) 1)							•			, 	
Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)				· · ·		<i>′</i>	area f	rom Tab	ole 9.	Th	1 (°C)					21	(85)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	•	•	• •			-				,	(-)						
(86)m= 0.96 0.93 0.89 0.82 0.72 0.58 0.46 0.5 0.68 0.86 0.94 0.96 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)				<u> </u>		T È		,	A	ua	Sep	Oct	Nov	D	ec]	
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)				<u> </u>						<u> </u>							(86)
(87)m= 18.59 18.92 19.4 19.96 20.44 20.77 20.91 20.89 20.64 20 19.2 18.54 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)		tornal tompor					u oto		 7 in T							1	
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.91 19.92 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (88)				1 · · ·	· · ·	1					i	20	19.2	18	54	1	(87)
(88)m= 19.91 19.91 19.92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td><td>10.2</td><td>10.</td><td>57</td><td>J</td><td>(01)</td></t<>												20	10.2	10.	57	J	(01)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	· ·			î .		1						40.00	10.00	40	00	1	(00)
										92	19.92	19.92	19.92	19.	92	J	(00)
(89)m = 1 0.95 1 0.92 1 0.88 1 0.8 1 0.67 1 0.51 1 0.36 1 0.4 1 0.62 1 0.83 1 0.92 1 0.96 1 (89)				I		1			<u> </u>		i					1	10-23
	(89)m=	0.95 0.92	0.88	0.8	0.67	0	.51	0.36	0.4	4	0.62	0.83	0.92	0.9	96	J	(89)

Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	le 9c)				
(90)m=	16.7	17.18	17.87	18.66	19.31	19.71	19.86	19.84	19.57	18.74	17.59	16.64		(90)
			-	-				-	1	fLA = Livin	ng area ÷ (4	4) =	0.38	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	17.43	17.85	18.45	19.16	19.75	20.12	20.27	20.24	19.98	19.22	18.21	17.37		(92)
Apply	adjustn	nent to t	he mear	n internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	17.43	17.85	18.45	19.16	19.75	20.12	20.27	20.24	19.98	19.22	18.21	17.37		(93)
			uirement											
				mperatui using Ta		ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm			••••	••••	7.0.9	P			200		
(94)m=	0.93	0.9	0.85	0.77	0.66	0.53	0.39	0.43	0.62	0.8	0.9	0.94		(94)
Usefu	Il gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	599.73	695.82	754.83	765.68	699.88	542.93	388	399.92	535.73	605.36	584.3	568.13		(95)
Montl	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			· · · · · ·	· · ·			<u> </u>	x [(93)m	<u>, </u>	i			l	()
(97)m=		1485.52	1366.25		912.75	626.23	415.87	436.13	667.2	978.18	1260.33	1494.41		(97)
•			ement fo 454.9	286.9	10nth, k 158.38	/Vh/moni 0	h = 0.02	24 x [(97) 0)m – (95 0	í - ·	1)m 486.74	690.45		
(98)m=	678.38	530.68	404.9	200.9	100.00	0	0			277.37	r) = Sum(9	689.15	3562.49	(98)
0								TULA	i per year	(KVVII/yeal	r) = 3um(9	O)15,912 =		4
Space	e neating	g require	ement in	kWh/m ²	/year								37.7	(99)
				mmunity										
•		•				-		ting prov (Table 1 ⁻	•		unity sch	neme.	0	(301)
	•			-			•		1) 0 111	one				
				mmunity	-								1	(302)
								allows for See Appel		up to four	other heat	sources; ti	he latter	
			Commun			ioni powei	310110113.		IUIX O.				0.67	(303a)
Fractic	on of cor	nmunitv	heat fro	m heat s	ource 2								0.33	_](303b)
				m Comn		HP				(3	02) x (303	a) =	0.67](304a)
				m comm	•		<u>م</u> 2				602) x (303		0.33	(304b)
								unity hea	ting eve		(000) X (000	5) -		(305)
						,			ung sys	tem			1	
			(Table 1	l2c) for c	commun	ity neatir	ng syste	m					1.05	(306)
-	heating	-	requiren	nent									kWh/year 3562.49	7
	•	-	munity C						(98) x (30	04a) x (30	5) x (306) :	=	2491.25	(307a)
•			source 2								5) x (306)		1249.37	(307b)
•					heating	system	in % (fro	om Table					0](308
		, seriadar	,			-,				- P STIGIN	-,		v	,

Space heating requirement from sec	ondary/supplementary syste	m (98) x (301)	x 100 ÷ (308) =	:	0	(309)
Water heating Annual water heating requirement					2191.32	7
If DHW from community scheme: Water heat from Community CHP		(64) x (303a) x (305) x (306) =	1532.39	 (310a)
Water heat from heat source 2) x (305) x (306		768.49	(310b)
Electricity used for heat distribution		0.01 × [(307a)(3			60.41	(313)
Cooling System Energy Efficiency Ra	atio			(/)	0	(314)
Space cooling (if there is a fixed cool		= (107) ÷ (3 ⁻	14) =		0	(315)
Electricity for pumps and fans within mechanical ventilation - balanced, ex	dwelling (Table 4f):		,		120.8	(330a)
warm air heating system fans					0	(330b)
pump for solar water heating					0	(330g)
Total electricity for the above, kWh/ye	ear	=(330a) + (3	330b) + (330g) =	=	120.8	(331)
Energy for lighting (calculated in App	endix L)				389.07	(332)
Electricity generated by PVs (Append	dix M) (negative quantity)				-254.41	(333)
Electricity generated by wind turbine	(Appendix M) (negative qua	ntity)			0	(334)
12b. CO2 Emissions – Community h	eating scheme				L	
Electrical efficiency of CHP unit					32	(361)
Heat efficiency of CHP unit					50.4	(362)
		Energy kWh/year	Emissio kg CO2/		Emissions kg CO2/year	
Space heating from CHP)	307a) × 100 ÷ (362) =	4942.96 ×	0.22		1067.68	(363)
less credit emissions for electricity	-(307a) × (361) ÷ (362) =	1581.75 ×	0.52		-820.93	(364)
Water heated by CHP	310a) × 100 ÷ (362) =	3040.45 ×	0.22		656.74	(365)
less credit emissions for electricity	-(310a) × (361) ÷ (362) =	972.94 ×	0.52		-504.96	(366)
Efficiency of heat source 2 (%)	If there is CHP using t	wo fuels repeat (363)	to (366) for the	second fue	95	(367b)
CO2 associated with heat source 2	[(307b)+(3	10b)] x 100 ÷ (367b) >	× 0.22	=	458.8	(368)
Electrical energy for heat distribution	[(:	313) x	0.52	=	= 31.36	(372)
Total CO2 associated with communit	y systems (3	63)(366) + (368)(372)	=	888.68	(373)
CO2 associated with space heating (secondary) (3	09) x	0	=	= 0	(374)
CO2 associated with water from imm	ersion heater or instantaneo	us heater (312)	0.22	=	= 0	(375)
Total CO2 associated with space and	d water heating (3	73) + (374) + (375) =			888.68	(376)
CO2 associated with electricity for pu	imps and fans within dwelling	g (331)) x	0.52	=	62.7	(378)
CO2 associated with electricity for lig	hting (3	32))) x	0.52	=	201.93	(379)
Energy saving/generation technologi Item 1	es (333) to (334) as applicat	le	0.52	x 0.01 =	-132.04	(380)

Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14) sum of (376)...(382) =

(383) ÷ (4) =

1021.27	(383)
10.81	(384)
90.19	(385)

			User D	etails:						
Assessor Name: Software Name:	Ross Boult Stroma FS			Stroma Softwa					028068 on: 1.0.4.18	
			Property	Address:	B2A-10	5-07				
Address :		, Flat Type 2-	17A, Wimt	oledon, L	ondon					
1. Overall dwelling dimer	isions:		_							
Ground floor				a(m²) 94.5	(1a) x	Av. He i	i ght(m) 6	(2a) =	Volume(m³) 245.7	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+((1n)	94.5	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	245.7	(5)
2. Ventilation rate:										
Number of chimneys	main heating	second heating + 0		other 0] = [total 0		40 =	m ³ per hour	(6a)
Number of open flues	0	+ 0	+	0	=	0	x 2	20 =	0	(6b)
Number of intermittent fan	S					3	x ′	10 =	30	(7a)
Number of passive vents						0	x ′	10 =	0	(7b)
Number of flueless gas fire	es				Ē	0	x 4	40 =	0	(7c)
								Air ch	anges per hou	ır
Infiltration due to chimney					continue fro	30 om (9) to (÷ (5) =	0.12	(8)
Number of storeys in the	e dwelling (ns)							0	(9)
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	esent, use the val	ue corresponding			•	uction			0](11)
If suspended wooden flo	oor, enter 0.2	(unsealed) or	0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else e	enter 0							0	(13)
Percentage of windows	and doors dra	aught stripped	1						0	(14)
Window infiltration				0.25 - [0.2			(0	(15)
Infiltration rate				(8) + (10)					0	(16)
Air permeability value, o						etre of e	nvelope	area	5	(17)
If based on air permeabilit Air permeability value applies						is heina us	ed		0.37	(18)
Number of sides sheltered				groo un por	inio abinty i	io boing ac			2	(19)
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter fac	tor		(21) = (18)) x (20) =				0.32	(21)
Infiltration rate modified fo	r monthly win	d speed								
Jan Feb M	Mar Apr	May Jur	n Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table	e 7							_	
(22)m= 5.1 5 4	1.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
	0.4	0.4	0.39	0.35	0.34	0.3	0.3	0.29	0.32	0.34	0.36	0.37		
		c <i>tive air (</i> al ventila	-	rate for t	he appli	cable ca	se							(23a)
				endix N, (2	3b) = (23a	i) x Fmv (e	equation (N	N5)), other	rwise (23b) = (23a)			0	(23b)
				iency in %) (200)			0	(230) (23c)
			-	-	-					2h)m ± (23b) v [1 – (23c)	-	(230)
(24a)m=	0			0	0	0		0				1 - (200)]	(24a)
· · I	halance	-	-	entilation	-	heat rec		 /\/) (24b	1 - (22)	$\frac{1}{1}$	23h)		J	
(24b)m=	0			0	0	0			0		0	0	1	(24b)
	whole h			ntilation c	or positiv				l]	
,				hen (24c	•	•				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input v	ventilatio	on from I	oft	!			1	
i	f (22b)n	n = 1, th	en (24d)	m = (22t)m othe	rwise (2	4d)m = 0	0.5 + [(2	2b)m² x	0.5]	-	-		
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(25)
3. Hea	at losse	s and he	eat loss i	paramete	er:									
ELEN		Gros		Openin		Net Ar	ea	U-valı	Je	AXU		k-value	e A	Xk
		area	(m²)	. m		A ,r	n²	W/m2	K	(W/I	K)	kJ/m²·l	K k.	J/K
Window	ws Type	e 1				2.61	x1,	/[1/(1.4)+	0.04] =	3.46				(27)
Window	ws Type	2				1.51	x1,	/[1/(1.4)+	0.04] =	2				(27)
Window	ws Type	e 3				2.78	x1,	/[1/(1.4)+	0.04] =	3.69				(27)
Window	ws Type) 4				2.61	x1,	/[1/(1.4)+	0.04] =	3.46				(27)
Window	ws Type	e 5				1.51	x1,	/[1/(1.4)+	0.04] =	2				(27)
Window	ws Type	e 6				12.6		/[1/(1.4)+	0.04] =	16.7	=			(27)
Walls		45.5	52	23.62	2	21.9	×	0.18		3.94	= r			(29)
Roof		94.5		0	=	94.5	×	0.13	= =	12.28	= i		\dashv	(30)
Total a	rea of e	lements				140.02	2		เ		L			(31)
				effective wil	ndow U-va			formula 1	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	1 3.2	()
				nternal wall			-			, -	-			
Fabric	heat los	ss, W/K =	= S (A x	U)				(26)(30)	+ (32) =				47.54	(33)
Heat ca	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	1157.07	(34)
		•		⁻ = Cm ÷	,					tive Value			250	(35)
	-	sments wh ad of a dei		tails of the	constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
				culated u	isina An	nendix k	<						15.97	(36)
	•	•	,	own (36) =	• •	•	· ·						15.97	(30)
	abric he			()		- /			(33) +	(36) =			63.51	(37)
Ventila	tion hea	at loss ca	alculated	d monthly	/				(38)m	= 0.33 × (25)m x (5)		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m=	47.13	46.88	46.63	45.45	45.23	44.2	44.2	44.01	44.6	45.23	45.67	46.14		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m		_	
(39)m=	110.64	110.39	110.13	108.96	108.74	107.71	107.71	107.52	108.1	108.74	109.18	109.65		
Stroma F	SAP 201	2 Version:	1.0.4.18	(SAP 9.92)	- http://ww	ww.stroma	.com		-	Average =	Sum(39)1	12 /12=	108.95 _{age}	<u>2 of 39)</u>

Heat lo	oss para	imeter (I	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.17	1.17	1.17	1.15	1.15	1.14	1.14	1.14	1.14	1.15	1.16	1.16		
Numb	er of day	/s in mo	nth (Tab	le 1a)					,	Average =	Sum(40)1.	.12 /12=	1.15	(40)
Turno	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
														. ,
4. Wa	ater hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				(1 - exp	0(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.	2. 9)	68		(42)
Reduce	the annua	al average	hot water		5% if the c	welling is	designed	(25 x N) to achieve		se target o	97 f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	-	r day for ea	ach month	Vd,m = fa			· ·					I	
(44)m=	107.7	103.78	99.87	95.95	92.03	88.12	88.12	92.03	95.95	99.87	103.78	107.7		
Energy	content of	hot water	used - cal	lculated m	onthly $= 4$.	190 x Vd,r	m x nm x [OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1174.9	(44)
(45)m=	159.71	139.69	144.14	125.67	120.58	104.05	96.42	110.64	111.97	130.49	142.43	154.67		
lf instan	taneous v	vater heati	ng at point	t of use (no	o hot wate	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	:	1540.48	(45)
(46)m=	23.96	20.95	21.62	18.85	18.09	15.61	14.46	16.6	16.79	19.57	21.37	23.2		(46)
Water	storage	loss:												
Storag	je volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
	•	-		ank in dw	-			. ,	ora) onto	or (0) in (47)			
	storage		not wate		iciuues i	nstantai	ieous cu	ombi boil	ers) erne		47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):				1.	39		(48)
Tempe	erature f	actor fro	m Table	2b							0.	54		(49)
-			-	e, kWh/ye				(48) x (49)) =		0.	75		(50)
,				cylinder									' I	(= .)
		age loss leating s		rom Tabl on 4.3	ie z (kvv	n/iitre/da	iy)				()		(51)
		from Ta)		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energ	y lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	()		(54)
Enter	(50) or	(54) in (5	55)								0.	75		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(56)
If cylind	er contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(57)
Prima	y circuit	loss (ar	nnual) fro	om Table	e 3						(0		(58)
	•					,	• •	65 × (41)						
		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	ı —	r	i		ng and a		i	· · · · ·		I	
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi	loss ca	lculated	for eacl	h month	(61)m =	(60) ÷	- 365 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	for e	ach month	(62)m :	= 0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	206.31	181.77	190.74	170.76	167.18	149.1	15 143.02	157.24	157.06	177.08	187.53	201.27		(62)
Solar DH	W input	calculated	using Ap	pendix G o	r Appendix	H (ne	gative quantit	y) (enter '	0' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	S and/or V	WWHRS	appli	es, see Ap	pendix	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter		-		·	-			-		-	
(64)m=	206.31	181.77	190.74	170.76	167.18	149.1	15 143.02	157.24	157.06	177.08	187.53	201.27		
								Out	tput from w	ater heate	r (annual)₁	12	2089.09	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.	85 × (45)m	n + (61)r	m] + 0.8 x	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	90.38	80.11	85.2	77.86	77.37	70.6	7 69.34	74.07	73.3	80.66	83.43	88.71		(65)
inclu	de (57)	m in calo	culation	of (65)m	only if c	vlinde	er is in the	dwelling	or hot w	vater is fi	rom com	nunity h	eating	
	. ,			5 and 5a	-	,			, 			,	Ū	
	Ŭ	ns (Table			/-									
Melabo	Jan Jan	Feb	Mar	Apr	May	Ju	n Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	134.12	134.12	134.12		134.12	134.		134.12	134.12	134.12	134.12	134.12		(66)
					l) or L9a), a						I	
(67)m=	22.03	19.57	15.91	12.05		7.6		10.68	14.33	18.2	21.24	22.64	1	(67)
											21.24	22.04	l	(0.)
		<u>,</u>	· · · · ·	T			1 L13 or L1	<u>, </u>	1	r	040.00	000.04	1	(69)
(68)m=	247.12	249.68	243.22		212.1	195.		182.31	188.77	202.53	219.89	236.21		(68)
	<u> </u>	<u> </u>	· · · · · ·	1	· ·		15 or L15a	í	1	1			1	(00)
(69)m=	36.41	36.41	36.41	36.41	36.41	36.4	1 36.41	36.41	36.41	36.41	36.41	36.41		(69)
Pumps	and fa	ns gains	(Table	5a)									1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	/aporatic	on (nega	ative valu	es) (Tab	le 5)								
(71)m=	-107.3	-107.3	-107.3	-107.3	-107.3	-107	.3 -107.3	-107.3	-107.3	-107.3	-107.3	-107.3		(71)
Water	heating	gains (T	able 5)									-		
(72)m=	121.48	119.22	114.52	108.14	103.99	98.1	5 93.19	99.55	101.81	108.42	115.88	119.23		(72)
Total i	nterna	gains =	:				(66)m + (67)n	n + (68)m	+ (69)m +	(70)m + (7	(1)m + (72)	m		
(73)m=	456.86	454.7	439.89	415.88	391.33	367.	77 352.52	358.77	371.15	395.38	423.25	444.32		(73)
6. Sol	lar gain	s:	•											
Solar g	ains are	calculated	using sola	ar flux from	Table 6a a	and as	sociated equa	ations to c	onvert to th	ne applicat	ole orientat	ion.		
Orienta		Access F		Area	l		Flux		g	_	FF		Gains	
		Table 6d		m²			Table 6a		Table 6b	Т	able 6c		(W)	
Northea	ast <mark>0.9x</mark>	0.77	X	2.0	61	x	11.28	x	0.63	x	0.7	=	9	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	(1.	51	x	11.28	x	0.63	x	0.7	=	5.21	(75)
Northea	ast <mark>0.9</mark> x	0.77	×	2.0	61	x	22.97	x	0.63	x	0.7	=	18.32	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	1.	51	x	22.97	x	0.63	_ x [0.7	=	10.6	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	2.0	61	x	41.38	×	0.63	× [0.7	=	33.01	(75)

Northeast 0.9x	0.77	x	1.51	×	41.38) ×	0.63	x	0.7	=	19.1	(75)
Northeast 0.9x	0.77] ^] x	2.61	x	67.96	^ x	0.63	x	0.7	=	54.2	(75)
Northeast 0.9x	0.77	」 ^] ×	1.51	x	67.96	^ x	0.63	x	0.7	=	31.36	(75)
Northeast 0.9x	0.77] ×	2.61	x	91.35	x	0.63	x	0.7	=	72.86	(75)
Northeast 0.9x	0.77	」 】 ×	1.51	x	91.35] x	0.63	x	0.7	=	42.15	(75)
Northeast 0.9x	0.77	」 】 ×	2.61	x	97.38	 x	0.63	x	0.7	=	77.68	(75)
Northeast 0.9x	0.77	」 】 x	1.51	x	97.38	x	0.63	x	0.7	=	44.94	(75)
Northeast 0.9x	0.77	」 】 ×	2.61	x	91.1	x	0.63	x	0.7	=	72.67	(75)
Northeast 0.9x	0.77	x	1.51	x	91.1	×	0.63	x	0.7	=	42.04	(75)
Northeast 0.9x	0.77] ×	2.61	x	72.63	x	0.63	x	0.7	=	57.93	(75)
Northeast 0.9x	0.77] ×	1.51	×	72.63	×	0.63	x	0.7	=	33.52	(75)
Northeast 0.9x	0.77	x	2.61	x	50.42	×	0.63	x	0.7	=	40.22	(75)
Northeast 0.9x	0.77	x	1.51	x	50.42	×	0.63	x	0.7	=	23.27	(75)
Northeast 0.9x	0.77	x	2.61	x	28.07	×	0.63	x	0.7	=	22.39	(75)
Northeast 0.9x	0.77	x	1.51	x	28.07	×	0.63	x	0.7	=	12.95	(75)
Northeast 0.9x	0.77	x	2.61	x	14.2	×	0.63	x	0.7	=	11.32	(75)
Northeast 0.9x	0.77	x	1.51	x	14.2	x	0.63	x	0.7	=	6.55	(75)
Northeast 0.9x	0.77	x	2.61	×	9.21	×	0.63	x	0.7	=	7.35	(75)
Northeast 0.9x	0.77	x	1.51	×	9.21	×	0.63	x	0.7	=	4.25	(75)
Southwest _{0.9x}	0.77	x	2.61	x	36.79]	0.63	x	0.7	=	29.35	(79)
Southwest _{0.9x}	0.77	x	1.51	x	36.79]	0.63	x	0.7	=	16.98	(79)
Southwest _{0.9x}	0.77	x	2.78	x	36.79		0.63	x	0.7	=	31.26	(79)
Southwest _{0.9x}	0.54	x	12.6	x	36.79		0.63	x	0.7	=	99.36	(79)
Southwest _{0.9x}	0.77	x	2.61	x	62.67]	0.63	x	0.7	=	49.99	(79)
Southwest _{0.9x}	0.77	x	1.51	x	62.67		0.63	x	0.7	=	28.92	(79)
Southwest _{0.9x}	0.77	x	2.78	×	62.67		0.63	x	0.7	=	53.25	(79)
Southwest _{0.9x}	0.54	x	12.6	x	62.67		0.63	x	0.7	=	169.25	(79)
Southwest _{0.9x}	0.77	x	2.61	x	85.75		0.63	x	0.7	=	68.4	(79)
Southwest _{0.9x}	0.77	×	1.51	x	85.75		0.63	x	0.7	=	39.57	(79)
Southwest _{0.9x}	0.77	×	2.78	x	85.75		0.63	x	0.7	=	72.86	(79)
Southwest _{0.9x}	0.54	x	12.6	x	85.75		0.63	x	0.7	=	231.58	(79)
Southwest _{0.9x}	0.77	×	2.61	x	106.25		0.63	x	0.7	=	84.75	(79)
Southwest _{0.9x}	0.77	x	1.51	x	106.25		0.63	x	0.7	=	49.03	(79)
Southwest _{0.9x}	0.77	x	2.78	x	106.25		0.63	x	0.7	=	90.27	(79)
Southwest _{0.9x}	0.54	x	12.6	x	106.25		0.63	x	0.7	=	286.93	(79)
Southwest _{0.9x}	0.77	×	2.61	x	119.01	ļ	0.63	x	0.7	=	94.93	(79)
Southwest _{0.9x}	0.77	×	1.51	×	119.01	ļ	0.63	x	0.7	=	54.92	(79)
Southwest _{0.9x}	0.77	×	2.78	×	119.01	ļ	0.63	x	0.7	=	101.11	(79)
Southwest _{0.9x}	0.54	×	12.6	x	119.01	ļ	0.63	x	0.7	=	321.39	(79)
Southwest _{0.9x}	0.77	×	2.61	×	118.15]	0.63	x	0.7	=	94.24	(79)
Southwest _{0.9x}	0.77	x	1.51	x	118.15	J	0.63	X	0.7	=	54.52	(79)

Southwest ₀	0 77	,		70	x		40.45	1	<u> </u>	0.00	Тх	0.7	_	_	400.00	(79)
Southwesto						<u> </u>	18.15]]		0.63	4	0.7			100.38	(79)
Southwesto	-				x	<u> </u>	18.15]]		0.63		0.7		=	319.07	
Southwesto					x	<u> </u>	13.91]]		0.63		0.7		=	90.86	(79)
Southwesto					x	<u> </u>	13.91]		0.63		0.7		=	52.57	(79)
Southwesto					X	<u> </u>	13.91] 1		0.63		0.7		=	96.78	(79)
Southwest	0.01	, 			x	<u> </u>	13.91] 1		0.63		0.7		=	307.61	(79)
Southwest	0.11	,			X	<u> </u>	04.39] 1		0.63	_ ×	0.7		=	83.27	(79)
Southwest	-	,			X	<u> </u>	04.39] 1		0.63	×	0.7		=	48.17	(79)
		,			x	<u> </u>	04.39] 1		0.63		0.7		=	88.69	(79)
Southwesto	0.01	, ,			x	<u> </u>	04.39]		0.63		0.7		=	281.91	(79)
Southwest ₀	•				x	9	2.85]		0.63	×	0.7		=	74.06	(79)
Southwest ₀	•	,	1.	51	x	9	2.85]		0.63	×	0.7		=	42.85	(79)
Southwest ₀		,	2.	78	x	9	2.85]		0.63	×	0.7		=	78.89	(79)
Southwest ₀	0.01	,	12	.6	x	9	2.85			0.63	×	0.7		=	250.75	(79)
Southwest ₀	•	,	2.	61	x	6	9.27	ļ		0.63	×	0.7		=	55.25	(79)
Southwest ₀)	1.	51	x	6	9.27	ļ		0.63	×	0.7		=	31.97	(79)
Southwest ₀	•)	2.	78	x	6	9.27			0.63	×	0.7		=	58.85	(79)
Southwest ₀	. <mark>9x</mark> 0.54)	12	6	x	6	9.27			0.63	×	0.7		=	187.06	(79)
Southwest ₀	.9x 0.77)	2.	51	x	4	4.07]		0.63	x	0.7		=	35.15	(79)
Southwest ₀	.9x 0.77)	1.	51	x	4	4.07]		0.63	×	0.7		=	20.34	(79)
Southwest ₀	.9x 0.77)	2.	78	x	4	4.07]		0.63	×	0.7		=	37.44	(79)
Southwest ₀	. <mark>9x</mark> 0.54)	12	.6	x	4	4.07]		0.63	x	0.7		=	119.01	(79)
Southwest ₀	.9x 0.77)	2.	61	x	3	31.49]		0.63	x	0.7		=	25.12	(79)
Southwest ₀	.9x 0.77)	1.	51	x	3	31.49]		0.63	×	0.7		=	14.53	(79)
Southwest ₀	.9x 0.77)	2.	78	x	3	31.49]		0.63	×	0.7		=	26.75	(79)
Southwest ₀	.9x 0.54)	12	.6	x	3	1.49	Ī		0.63	×	0.7		=	85.03	(79)
								-								
Solar gains	s in watts, ca	alculate	d for eac	h mont	h			(83)m	า = Sเ	um(74)m	.(82)m					
(83)m= 191		464.51	596.55	687.37		90.83	662.52	593	.48	510.03	368.4	6 229.82	163	.03		(83)
	s – internal a		1	<u>т (</u>	<u> </u>		· · · · · ·								1	
(84)m= 648	8.02 785.03	904.4	1012.44	1078.7	7 1	058.6	1015.04	952	.26	881.18	763.8	4 653.07	607	.35		(84)
7. Mean i	nternal temp	erature	(heating	j seaso	n)											
Temperat	ure during h	eating	periods i	n the liv	/ing	area	from Tab	ole 9	, Th	1 (°C)					21	(85)
Utilisation	factor for ga	ains for	living ar	ea, h1,	m (s	ее Та	ble 9a)									_
Ja	an Feb	Mar	Apr	May	/	Jun	Jul	A	ug	Sep	Oct	Nov	D	ес		
(86)m=	0.99	0.97	0.92	0.81		0.62	0.46	0.5	51	0.76	0.95	0.99	1			(86)
Mean inte	ernal tempera	ature ir	living ar	ea T1 (follo	ow ste	ps 3 to 7	7 in T	able	e 9c)			-		-	
(87)m= 19	<u> </u>	20.29	20.62	20.86	<u> </u>	20.97	20.99	20.		20.92	20.6	20.14	19.	77		(87)
	ure during h	eating	- Deriode i	n rest c	f du	Alling	from Ta		<u> </u>	12 (°C)		I			1	
(88)m= 19		19.95	19.96	19.96		19.97	19.97	19.	<u> </u>	19.97	19.96	19.96	19.9	95]	(88)
															1	
(89)m=	factor for ga	ains for 0.96	0.9	0.75	· · · ·	,m (se 0.53	0.36	9a) 0.	<u>4</u>	0.68	0.93	0.99	1		1	(89)
(00)11-	0.99	0.90	0.9	0.75		0.00	0.00		-	0.00	0.93	0.35			J	

Mean	interna	l temper	ature in	the rest	of dwelli	na T2 (f	ollow ste	ens 3 to .	7 in Tahl	e 9c)				
(90)m=	18.37	18.66	19.06	19.53	19.83	19.95	19.97	19.97	19.91	19.51	18.85	18.32		(90)
(LA = Livin			0.38	(91)
											9 4.04 . (.,	0.38	
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	_A × T1	+ (1 – fL	A) × T2					
(92)m=	18.92	19.18	19.53	19.95	20.22	20.34	20.36	20.36	20.3	19.93	19.35	18.88	1	(92)
Apply	adjustr	nent to t	he mear	n interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.92	19.18	19.53	19.95	20.22	20.34	20.36	20.36	20.3	19.93	19.35	18.88		(93)
8. Spa	ace hea	iting requ	uiremen	t										
Set Ti	to the	mean int	ternal te	mperatu	re obtain	ed at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation	factor fo	or gains	using Ta	ble 9a									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hr	n:										
(94)m=	0.99	0.98	0.96	0.9	0.77	0.57	0.4	0.44	0.7	0.93	0.99	1		(94)
Usefu	Il gains,	hmGm	, W = (9	4)m x (8-	4)m									
(95)m=	643.82	772.44	868.49	907.96	825.24	600.83	402.77	421.76	620.2	708.41	643.7	604.42		(95)
Month	nly aver	age exte	ernal terr	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for me	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1617.78	1576.1	1435.56	1203.46	926.91	618.43	405.11	425.77	669.97	1014.24	1337	1609.52		(97)
Space	e heatin	a require	ement fo	r each n	nonth, k\	Nh/mont	h = 0.02	24 x [(97)m – (95)m] x (4′	1)m			
(98)m=	724.62	540.06	421.9	212.76	75.64	0	0	0	0	227.54	, 499.18	747.79		
								Tota	l per year	(kWh/vear	<u>.</u>) = Sum(9	8)1 59 12 =	3449.49	(98)
0											/ (-	- ,]
Space	e neatin	g require	ement in	kWh/m²	year								36.5	(99)
9a. En	ergy rea	quiremer	nts – Ind	ividual h	eating sy	ystems i	ncluding	micro-C	CHP)					
-	e heatiı	-												-
Fracti	on of sp	bace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	bace hea	at from n	nain syst	em(s)			(202) = 1 ·	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =		-	1	(204)
Efficie	ency of	main spa	ace heat	ing syste	em 1								93.5	(206)
		•		0,		a ovotom	0/							<u> </u>
EIIICIE		seconda	ry/suppi	ementar	y neating	y system	1, 70						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heatin	g require	ement (o	alculate	d above))								
	724.62	540.06	421.9	212.76	75.64	0	0	0	0	227.54	499.18	747.79	1	
(211)m	n = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
	775	577.6	451.23	227.55	80.9	0	0	0	0	243.35	533.88	799.78		
				1				Tota	l (kWh/yea	ar) =Sum(2	1 211) _{15,1012}	=	3689.3	(211)
Snace	a haatin	a fuel (s	econdar	y), kWh/	month							I]```
•		01)] } x 1			monui									
(215)m=		0		0	0	0	0	0	0	0	0	0		
(2.0)					Ů	Ů	Ū		l (kWh/yea	-			0	(215)
\A/~ 4	h a - 1	_							,, , , , , , , , , , , , , , , , , , ,	,	∼ / 15,1012			
	heating	-	tor (col-	uloted	hours)									
Juiput	206.31	ater nea 181.77	ter (calc 190.74	ulated a	bove) 167.18	149.15	143.02	157.24	157.06	177.08	187.53	201.27		
Efficier		ater hea			107.10	1-10.10	1-10.02	101.24	107.00	111.00	107.00	201.27	70.0	(216)
													79.8	(210)

(217)m= 87.89	87.54	86.87	85.4	82.85	79.8	79.8	79.8	79.8	85.48	87.3	88]	(217)
Fuel for water	•											-	
(219)m = (64)m (219)m = 234.74	m x 100 207.64) ÷ (217) 219.56	m 199.95	201.78	186.9	179.22	197.04	196.81	207.15	214.8	228.72	1	
(210)	201101			200				l = Sum(2)				2474.31	(219)
Annual totals								kWh/year			kWh/year], ,	
Space heating fuel used, main system 1										-		3689.3]
Water heating fuel used												2474.31]
Electricity for p	oumps, fa	ans and	electric l	keep-ho	t								-
central heating pump:											30]	(230c)
boiler with a fan-assisted flue									45	j	(230e)		
Total electricity for the above, kWh/year						sum of (230a)(230g) =						75	(231)
Electricity for lighting											389.03	(232)	
12a. CO2 em	issions -	– Individ	ual heati	ng syste	ems inclu	uding mi	cro-CHF)					_
	Energy Emission factor								Emissions				
					kWh/year			kg CO2/kWh			kg CO2/year		
Space heating	(main s	ystem 1)		(211	I) x			0.2	16	=	796.89	(261)
Space heating	(second	dary)			(218	ō) x			0.5	19	=	0	(263)
Water heating					(219	9) x			0.2	16	=	534.45	(264)
Space and water heating					(261	I) + (262)	+ (263) + ((264) =				1331.34	(265)
Electricity for p	oumps, fa	ans and	electric l	keep-ho	t (231	I) x			0.5	19	=	38.93	(267)
Electricity for li	ghting				(232	2) x			0.5	19	=	201.91	(268)
Total CO2, kg/year								sum o	of (265)(2	271) =		1572.17	(272)
													_

TER =

16.64 (273)