Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 Printed on 25 March 2021 at 11:22:38

Project Information:

Assessed By: Bradley Clarke (STRO012757) Building Type: End-terrace House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 99.53m²

Site Reference: Radcliffe Street - Royton Plot Reference: 02-21-86514 009 3B5P [End]

Address: 009_3B5P_End_

Client Details:

Name: Brookhouse Group

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 18.54 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

16.67 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 60.5 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 51.0 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.27 (max. 0.30)	0.27 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.12 (max. 0.25)	0.18 (max. 0.70)	OK
Roof	0.10 (max. 0.20)	0.17 (max. 0.35)	OK
Openings	1.20 (max. 2.00)	1.20 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 474, product index 018509):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Ideal

Model: LOGIC MAX SYSTEM

Model qualifier: S30

(Regular)

Efficiency 89.5 % SEDBUK2009

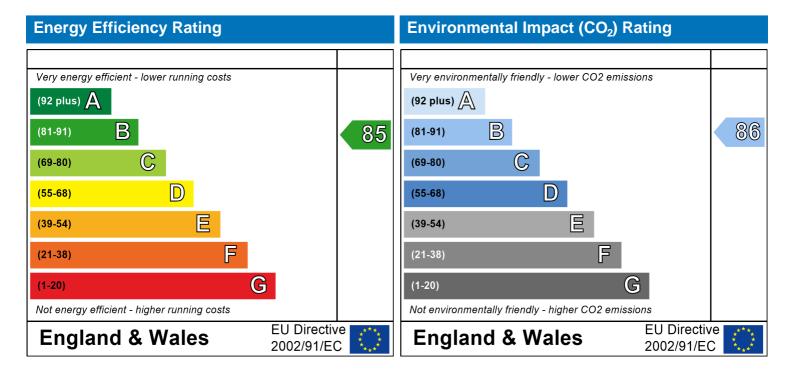
Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.4	42 kWh/day	
-	Permitted by DBSCG: 2.30	· · · · · · · · · · · · · · · · · · ·	OK
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing and ele	ctrical services	OK
Hot water controls:	Cylinderstat		OK
	Independent timer for DHV	V	OK
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with le	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (West Pennine	es):	Slight	ок
Based on:			
Overshading:		Average or unknown	
Windows facing: South East		1.47m²	
Windows facing: South West		0.56m²	
Windows facing: North East		2.13m²	
Windows facing: North East		1.19m²	
Windows facing: South East		1.19m²	
Windows facing: South East		1.19m²	
Windows facing: South East		1.19m²	
Windows facing: North East		2.63m²	
Windows facing: North East		1.19m²	
Windows facing: South West		6.62m² 2.13m²	
Windows facing: North East			
Windows facing: South West		0.56m² 2.13m²	
Windows facing: South West		1.19m ²	
Windows facing: South West Ventilation rate:		4.00	
ventilation rate.		4.00	
10 Key features			
Roofs U-value		0.09 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.12 W/m²K	
Photovoltaic array		···- ········	
and			

Predicted Energy Assessment



009_3B5P_End_

Dwelling type: Date of assessment: Produced by: Total floor area: End-terrace House 19 March 2021 Bradley Clarke 99.53 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Storey height:

Property Details: 02-21-86514 009 3B5P [End]

Address: 009_3B5P_End_
Located in: England
Region: West Pennines

UPRN:

Date of assessment: 19 March 2021 Date of certificate: 25 March 2021

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

New dwelling

Unknown

No related party

Thermal Mass Parameter: Calculated 166.93 Water use <= 125 litres/person/day: True

PCDF Version: 474

Property description:

Dwelling type: House
Detachment: End-terrace
Year Completed: 2021

Floor Location: Floor area:

Living area: 29.5 m² (fraction 0.782)

Front of dwelling faces: North East

Opening types:

Name:	Source:	Type:	Glazing:	Argon:
D_4	Manufacturer	Solid		
D_5	Manufacturer	Solid		
W_26	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_27	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_28	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_29	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_30	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_31	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_32	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_33	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_34	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_35	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_36	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_37	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_38	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No
W_39	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	No

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
D_4	mm	0	0	1.2	2.1	1
D_5	mm	0	0	1.2	2.1	1
W_26		0.7	0.63	1.2	1.47	1
W_27		0.7	0.63	1.2	0.56	1
W_28		0.7	0.63	1.2	2.13	1
W_29		0.7	0.63	1.2	1.19	1
W_30		0.7	0.63	1.2	1.19	1
W_31		0.7	0.63	1.2	1.19	1
W 32		0.7	0.63	1.2	1.19	1

Frame:

W_33	0.7	0.63	1.2	2.63	1
W_34	0.7	0.63	1.2	1.19	1
W_35	0.7	0.63	1.2	6.62	1
W_36	0.7	0.63	1.2	2.13	1
W_37	0.7	0.63	1.2	0.56	1
W_38	0.7	0.63	1.2	2.13	1
W_39	0.7	0.63	1.2	1.19	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
D_4	Doors	External Wall	South West	2.1	1
D_5	Doors	External Wall	North East	2.1	1
W_26	Windows	External Wall	South East	1.47	1
W_27	Windows	External Wall	South West	0.56	1
W_28	Windows	External Wall	North East	2.13	1
W_29	Windows	External Wall	North East	1.19	1
W_30	Windows	External Wall	South East	1.19	1
W_31	Windows	External Wall	South East	1.19	1
W_32	Windows	External Wall	South East	1.19	1
W_33	Windows	External Wall	North East	2.63	1
W_34	Windows	External Wall	North East	1.19	1
W_35	Windows	External Wall	South West	6.62	1
W_36	Windows	External Wall	North East	2.13	1
W_37	Windows	External Wall	South East	0.56	1
W_38	Windows	External Wall	South West	2.13	1
W_39	Windows	External Wall	South West	1.19	1

Overshading: Average or unknown

\circ	pac	uc	\sim I I I	CI.	ιo.

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elements		. 3					
External Wall	129.92	29.57	100.35	0.27	0	False	60
Roof insulated at cei	ling 75.87	0	75.87	0.09	0		9
Flat Roof	12.44	0	12.44	0.17	0		9
Ground Floor	36.51			0.12			110
Exposed Floor	1.22			0.18			20
Internal Elements							
Stud	180						9
Ceiling	62						9
Floor	62						18
Party Elements							
Party Wall	54.77						45

Thermal bridges

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0424

Length	Psi-value	·	
17.55	0.024	E2	Other lintels (including other steel lintels)
9.75	0.015	E3	Sill
53.4	0.01	E4	Jamb
18.88	0.092	E5	Ground floor (normal)
1.56	0.32	E20	Exposed floor (normal)
2.34	0.32	E21	Exposed floor (inverted)
25.94	0	E6	Intermediate floor within a dwelling
9.18	0.06	E10	Eaves (insulation at ceiling level)
4.59	0.24	E24	Eaves (insulation at ceiling level - inverted)
5.51	0.084	E12	Gable (insulation at ceiling level)
7.3	0.08	E14	Flat roof

17.96	0.062	E16	Corner (normal)
2.4	-0.106	E17	Corner (inverted – internal area greater than external area)
15.56	0.079	E18	Party wall between dwellings
0	-0.002	E11	Eaves (insulation at rafter level)
0	0.073	E13	Gable (insulation at rafter level)
0	0.12	E25	Staggered party wall between dwellings c
7.44	0.16	P1	Ground floor
12.95	0	P2	Intermediate floor within a dwelling
0.78	0.16	P7	Exposed floor (normal)
8.22	0.081	P4	Roof (insulation at ceiling level)
0	0.035	P5	Roof (insulation at rafter level)
0	0.08	R1	Head of roof window
0	0.06	R2	Sill of roof window
0	0.08	R3	Jamb of roof window
0	0.04	R5	Ridge (inverted)
0	0.04	R7	Flat ceiling (inverted)
0	0.06	R8	Roof to wall (rafter)
0	0.04	R9	Roof to wall (flat ceiling)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 5
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 474, product index 018509) Efficiency: Winter 79.8 % Summer: 90.5

Brand name: Ideal

Model: LOGIC MAX SYSTEM

Model qualifier: S30 (Regular boiler) Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating: Water heating:

From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres

Cylinder insulation: Measured loss, 1.42kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.393

Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South West

Assess Zero Carbon Home: No

		User Details:				
Assessor Name:	Bradley Clarke	Stroma Nur	nber:	STRO	012757	
Software Name:	Stroma FSAP 2012	Software Ve	ersion:	Versio	n: 1.0.5.33	
	Pi	roperty Address: 02-21	-86514 009 3B5F	P [End]		
Address :	009_3B5P_End_					
1. Overall dwelling dime	nsions:					
		Area(m²)	Av. Height(m))	Volume(m³)
Ground floor		36.51 (1a) x	2.4	(2a) =	87.62	(3a)
First floor		37.73 (1b) x	2.69	(2b) =	101.49	(3b)
Second floor		25.29 (1c) x	2.69	(2c) =	68.03	(3c)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1n	99.53 (4)				
Dwelling volume		(3a)+(3	8b)+(3c)+(3d)+(3e)+	(3n) =	257.15	(5)
2. Ventilation rate:						
	main secondary heating heating	y other	total		m³ per hou	r
Number of chimneys		+ 0 =	0 x	40 =	0	(6a)
Number of open flues	0 + 0	+ 0 =	0 x	20 =	0	(6b)
Number of intermittent far	 ns	_	5 X	10 =	50	(7a)
Number of passive vents			0 x	10 =	0	(7b)
Number of flueless gas fir	es		0 x	40 =	0	(7c)
				Air ch	anges per ho	ur
Infiltration due to obimno	/s, flues and fans = (6a)+(6b)+(7a	(a)+(7h)+(7c) -		1		_
-	een carried out or is intended, proceed		50 from (9) to (16)	÷ (5) =	0.19	(8)
Number of storeys in th		2 10 (11), 021000 0000	(6) 15 (1.6)		0	(9)
Additional infiltration	3 (2)		[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or timber frame or	0.35 for masonry cons		, -	0	(11)
if both types of wall are pr	esent, use the value corresponding to	•				`
deducting areas of openin	gs); if equal user 0.35 loor, enter 0.2 (unsealed) or 0.	1 (sealed) else enter ()		0	(12)
If no draught lobby, ent	,	(ocalou), clos cintor c	•		0	(13)
•	and doors draught stripped				0	(14)
Window infiltration	and doors araugin surpped	0.25 - [0.2 x (14) ÷	100] =		0	(15)
Infiltration rate			(12) + (13) + (15) =		0	(16)
	q50, expressed in cubic metres			e area	5	(17)
•	ty value, then $(18) = [(17) \div 20] + (8)$		neare or envelope	o urou		(18)
•	s if a pressurisation test has been done		ry is being used		0.44	(10)
Number of sides sheltered		o er a degree am permeazm	y 10 2011.1g acca		2	(19)
Shelter factor		(20) = 1 - [0.075 x	(19)] =		0.85	(20)
Infiltration rate incorporati	ng shelter factor	(21) = (18) x (20) =	=		0.38	(21)
Infiltration rate modified for	_					 ` ′
	Mar Apr May Jun	Jul Aug Sep	Oct Nov	Dec		
		1 1 1 1 2 2 2	1 232 134		I	
Monthly average wind spe		<u> </u>		 	ı	

4.4

4.3

3.8

3.8

3.7

4.3

4

4.5

4.7

4.9

(22)m=

5.1

5

Wind Factor (2	22a)m =	(22)m ∸	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
		ļ	<u> </u>			ļ	!	!	!				
Adjusted infiltr		r `				i ´	<u> </u>	ì	1			ı	
0.48 Calculate effec	0.47	0.46	0.42	0.41 he appli	0.36	0.36	0.35	0.38	0.41	0.42	0.44		
If mechanica		_	rato for t	по арріі	oabio oa							0	(23a)
If exhaust air he	eat pump (using Appe	endix N, (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
If balanced with	heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				0	(23c)
a) If balance	ed mech	anical ve	entilation	with hea	at recov	ery (MVI	HR) (24a	a)m = (22)	2b)m + (23b) × [1	l – (23c)	÷ 100]	_
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance	d mech	anical ve	entilation	without	heat red	covery (N	MV) (24b	m = (22)	2b)m + (2	23b)	_		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				•	-								
<u>`</u>	i	``	<u> </u>	``			ŕ	ŕ	.5 × (23b	i e		ı	(5.4.)
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural							on from I 0.5 + [(2		0.51				
(24d)m = 0.62	0.61	0.61	0.59	0.58	0.56	0.56	0.5 + [(2	0.57	0.51	0.59	0.6		(24d)
Effective air	<u> </u>		<u> </u>		<u> </u>								, ,
(25)m= 0.62	0.61	0.61	0.59	0.58	0.56	0.56	0.56	0.57	0.58	0.59	0.6		(25)
					•								
3 Heat losse	e and he	at lace i	naramet	or:									
3. Heat losse					Net Ar	ea	U-valı	ue	AXU		k-value	• A X	k
3. Heat losse ELEMENT	s and he Gros area	SS	oarameto Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²-ł		
	Gros	SS	Openin	gs						<) 			
ELEMENT	Gros	SS	Openin	gs	A ,r	m²	W/m2	2K	(W/I	<) 			<
ELEMENT Doors Type 1	Gros area	SS	Openin	gs	A ,r	m² x x	W/m2	2K = = =	(W/I 2.52	<) 			(26)
ELEMENT Doors Type 1 Doors Type 2	Gros area	SS	Openin	gs	A ,r	m² x x x1	W/m2 1.2	2K = = = 0.04] =	2.52 2.52	<) 			(26)
Doors Type 1 Doors Type 2 Windows Type	Gros area	SS	Openin	gs	A ,r 2.1 2.1 1.47	m ²	W/m2 1.2 1.2 /[1/(1.2)+	= = = = = = = = = = = = = = = = = = =	2.52 2.52 1.68	<)			(26) (26) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type	Gros area 1 2 2 2 3	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+	eK = = = 0.04] = 0.04] =	2.52 2.52 1.68 0.64	<)			(26) (26) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	2.52 2.52 1.68 0.64 2.44	<)			(26) (26) (27) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36	<)			(26) (26) (27) (27) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 2 2 3 4 4 5 5 6 6	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36	<)			(26) (26) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19	m ²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	2.52 2.52 1.68 0.64 2.44 1.36 1.36	<)			(26) (26) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 4 4 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19 1.19	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 4 5 6 6 7 8 8 9 9	SS	Openin	gs	A ,r 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19	m ²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = = = = = = = = = = =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 3.01 1.36	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 10	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19 6.62	m ²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 3.01 1.36 7.58	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 9 10 11	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19 6.62 2.13	m ²	W/m2 1.2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 1.36 7.58	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 10 11 12	SS	Openin	gs	A ,r 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19 6.62 2.13	m ²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 3.01 1.36 7.58 2.44 0.64	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 10 9 11 9 11 9 12 9 13	SS	Openin	gs	A ,r 2.1 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19 6.62 2.13 0.56 2.13	m ²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 3.01 1.36 7.58 2.44 0.64 2.44	<)			(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 10 9 11 9 11 9 12 9 13	SS	Openin	gs	A ,r 2.1 1.47 0.56 2.13 1.19 1.19 1.19 2.63 1.19 6.62 2.13	m²	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK = = = = = = = = = = = = = = = = = = =	(W/I 2.52 2.52 1.68 0.64 2.44 1.36 1.36 1.36 3.01 1.36 7.58 2.44 0.64				(26) (26) (27) (27) (27) (27) (27) (27) (27) (27

								J						
Floor Type 2					1.22	х	0.18	=	0.2196		20		24.4	(28)
Walls	129.	92	29.5	7	100.3	5 X	0.27	<u> </u>	27.09	∃i	60	Ī	6021	(29)
Roof Type1	75.8	37	0		75.87	7 X	0.09	<u> </u>	6.83	∃i	9		682.83	(30)
Roof Type2	12.4	4	0		12.44	, x	0.17	=	2.11		9		111.96	(30)
Total area of e	lements	, m²			255.9	6								(31)
Party wall					54.77	7 X	0	=	0		45		2464.65	(32)
Internal wall **					180						9		1620	(32c)
Internal floor					62						18		1116	(32d)
Internal ceiling					62						9		558	(32e)
* for windows and ** include the area						ated using	g formula 1	/[(1/U-valu	ıе)+0.04] а	is given ir	n paragrapl	n 3.2		
Fabric heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				74	4.73	(33)
Heat capacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a)	(32e) =	166	14.94	(34)
Thermal mass	•	•		•				` '	÷ (4) =			16	6.93	(35)
For design assess can be used instea				construct	ion are no	t known pr	ecisely the	indicative	values of	TMP in T	able 1f			
Thermal bridge				using Ap	pendix l	<						10	0.86	(36)
if details of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)									_
Total fabric hea									(36) =			85	5.58	(37)
Ventilation hea		·	l monthly				· .		= 0.33 × (1	1		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			(20)
(38)m= 52.27	51.89	51.52	49.76	49.43	47.89	47.89	47.61	48.48	49.43	50.09	50.79]		(38)
Heat transfer of	oefficier		135.34	135.01	133.48	133.48	133.19	(39)m 134.07	= (37) + (3 135.01	38)m 135.68	136.37	1		
(39)m= 137.86	137.47	137.1	133.34	133.01	133.40	133.46	133.19	l	Average =		1	13	35.34	(39)
Heat loss para	meter (H	HLP), W/	m²K						= (39)m ÷		127			٦, ,
(40)m= 1.39	1.38	1.38	1.36	1.36	1.34	1.34	1.34	1.35	1.36	1.36	1.37			_
Number of day	e in moi	nth (Tah	le 1a)						Average =	Sum(40)	112 /12=	1	.36	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31	1		(41)
					<u> </u>	<u>I</u>	<u> </u>	<u>I</u>	!			J		
4. Water heat	ing ene	rgy requi	rement:								kWh/y	ear:		
Assumed occu											2.74]		(42)
if TFA > 13.9 if TFA £ 13.9		+ 1.76 x	[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.	9)		J		
Annual averag									se target o		9.16]		(43)
not more that 125	_				-	•	io domovo	a water at	so largot of					
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]		
Hot water usage in	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)		!			•		
(44)m= 109.08	105.11	101.14	97.18	93.21	89.24	89.24	93.21	97.18	101.14	105.11	109.08			_
Energy content of	hot water	used - cal	culated ma	onthly – 4	190 x Vd r	n x nm v 「)Tm / 360(Total = Sui	· /		118	89.91	(44)
(45)m= 161.76	141.47	145.99	127.27	122.12	105.38	97.65	112.06	113.4	132.15	144.26	156.65	1		
(101.70	1-71.47	1-10.00	121.21	122.12	1 100.00	I 57.00	1 12.00		Total = Su		<u> </u>	150	60.16	(45)
									2 · Oui	. (. •) 112			•	J` ′

If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)24.26 21.22 21.9 19.09 18.32 15.81 14.65 17.01 19.82 21.64 23.5 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel (47)210 If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): (48)1.42 Temperature factor from Table 2b (49)0.54 Energy lost from water storage, kWh/year $(48) \times (49) =$ (50)0.77 b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)If community heating see section 4.3 Volume factor from Table 2a (52)0 Temperature factor from Table 2b 0 (53)Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) =$ (54)n Enter (50) or (54) in (55) 0.77 (55)Water storage loss calculated for each month $((56)m = (55) \times (41)m$ 23.77 21.47 23.77 23.77 23.77 23.77 23.77 (56)(56)m =23 23.77 If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) - (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H (57)(57)m =23.77 21.47 23.77 23 23.77 23.77 23.77 23 23.77 23 23.77 (58)0 Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) \div 365 x (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)(59)m =23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51 23.26 22.51 23.26 Combi loss calculated for each month (61)m = (60) \div 365 x (41)m 0 0 0 (61)(61)m =Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ 208.79 183.95 193.02 172.79 169.16 150.9 144.69 159.09 158.91 179.19 (62)(62)m =Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)(63)m =0 0 0 0 0 0 Output from water heater 208.79 183.95 193.02 172.79 169.16 150.9 144.69 159.09 179.19 (64)m =158.91 189.77 203.68 Output from water heater (annual) 1...12 2113.94 (64)Heat gains from water heating, kWh/month 0.25 [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] 86.17 70.1 74.89 (65)(65)m =91.41 78.73 78.23 71.45 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 164.11 164.11 164.11 164.11 164.11 164.11 164.11 164.11 164.11 (66)(66)m =164.11 164.11 164.11 Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 37.06 (67)56.96 50.59 41.14 31.15 19.66 21.24 47.05 54.92 (67)m =23.28 27.61 58.54

Applia	nces gai	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Tal	ole 5				
(68)m=	381.44	385.4	375.43	354.19	327.39	302.19	285.36	281.4	291.38	312.61	339.42	364.61		(68)
Cookin	g gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	ee Table	5				
(69)m=	54.15	54.15	54.15	54.15	54.15	54.15	54.15	54.15	54.15	54.15	54.15	54.15		(69)
Pumps	and far	ns gains	(Table 5	āa)									_	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41	-109.41		(71)
Water	heating	gains (T	able 5)											
(72)m=	122.86	120.57	115.82	109.35	105.15	99.24	94.22	100.65	102.94	109.63	117.19	120.58		(72)
Total i	nternal	gains =	l			(66)	m + (67)m	+ (68)m +	+ (69)m + (70)m + (7	1)m + (72)	m		
(73)m=	673.11	668.41	644.23	606.54	567.67	532.94	512.67	521.52	543.22	581.15	623.37	655.58		(73)
6. Sol	ar gains	S:												
Solar g	ains are c	alculated	using sola	r flux from	Table 6a	and assoc	iated equa	tions to co	nvert to th	e applicab	le orientat	ion.		

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	2.13	x	11.28	x	0.63	x	0.7	=	7.34	(75)
Northeast 0.9x	0.77	x	1.19	X	11.28	X	0.63	х	0.7	=	4.1	(75)
Northeast 0.9x	0.77	X	2.63	x	11.28	X	0.63	х	0.7	=	9.07	(75)
Northeast 0.9x	0.77	x	1.19	x	11.28	X	0.63	х	0.7	=	4.1	(75)
Northeast 0.9x	0.77	x	2.13	x	11.28	X	0.63	х	0.7	=	7.34	(75)
Northeast 0.9x	0.77	x	2.13	x	22.97	X	0.63	х	0.7	=	14.95	(75)
Northeast 0.9x	0.77	x	1.19	x	22.97	X	0.63	х	0.7	=	8.35	(75)
Northeast 0.9x	0.77	x	2.63	x	22.97	X	0.63	х	0.7	=	18.46	(75)
Northeast 0.9x	0.77	x	1.19	x	22.97	x	0.63	x	0.7	=	8.35	(75)
Northeast 0.9x	0.77	x	2.13	x	22.97	x	0.63	х	0.7	=	14.95	(75)
Northeast 0.9x	0.77	x	2.13	x	41.38	x	0.63	х	0.7	=	26.94	(75)
Northeast 0.9x	0.77	x	1.19	x	41.38	X	0.63	х	0.7	=	15.05	(75)
Northeast 0.9x	0.77	x	2.63	x	41.38	x	0.63	х	0.7	=	33.26	(75)
Northeast 0.9x	0.77	x	1.19	x	41.38	x	0.63	х	0.7	=	15.05	(75)
Northeast 0.9x	0.77	x	2.13	x	41.38	X	0.63	х	0.7	=	26.94	(75)
Northeast 0.9x	0.77	x	2.13	x	67.96	x	0.63	х	0.7	=	44.24	(75)
Northeast 0.9x	0.77	x	1.19	x	67.96	x	0.63	х	0.7	=	24.71	(75)
Northeast 0.9x	0.77	x	2.63	x	67.96	X	0.63	х	0.7	=	54.62	(75)
Northeast 0.9x	0.77	x	1.19	x	67.96	x	0.63	х	0.7	=	24.71	(75)
Northeast 0.9x	0.77	x	2.13	x	67.96	X	0.63	x	0.7	=	44.24	(75)
Northeast 0.9x	0.77	x	2.13	x	91.35	x	0.63	x	0.7	=	59.46	(75)
Northeast 0.9x	0.77	x	1.19	x	91.35	x	0.63	x	0.7	j =	33.22	(75)
Northeast 0.9x	0.77	x	2.63	x	91.35	x	0.63	x	0.7	j =	73.42	(75)
Northeast 0.9x	0.77	X	1.19	×	91.35	x	0.63	x	0.7	j =	33.22	(75)

Northeast _{0.9x}		1		1		1		١		1		7(75)
Northeast 0.9x	0.77	X	2.13	X	91.35	X	0.63	X	0.7] = 1	59.46	(75)
<u> </u>	0.77	X	2.13	X	97.38	X	0.63	X	0.7] = 1	63.39	(75)
Northeast 0.9x	0.77	X	1.19	X	97.38] X]	0.63	X	0.7] = 1	35.42	(75)
Northeast 0.9x	0.77	X	2.63	X	97.38	X 1	0.63	X	0.7] =	78.27	(75)
Northeast _{0.9x}	0.77	X	1.19	X	97.38	X	0.63	X	0.7	=	35.42	(75)
Northeast _{0.9x}	0.77	X	2.13	X	97.38	X	0.63	X	0.7	=	63.39	(75)
Northeast 0.9x	0.77	X	2.13	X	91.1	X	0.63	X	0.7	=	59.3	(75)
Northeast _{0.9x}	0.77	X	1.19	X	91.1	X	0.63	X	0.7	=	33.13	(75)
Northeast _{0.9x}	0.77	X	2.63	X	91.1	X	0.63	X	0.7	=	73.22	(75)
Northeast _{0.9x}	0.77	X	1.19	X	91.1	X	0.63	X	0.7	=	33.13	(75)
Northeast _{0.9x}	0.77	X	2.13	X	91.1	X	0.63	X	0.7	=	59.3	(75)
Northeast _{0.9x}	0.77	X	2.13	X	72.63	X	0.63	X	0.7	=	47.28	(75)
Northeast _{0.9x}	0.77	X	1.19	X	72.63	Х	0.63	X	0.7	=	26.41	(75)
Northeast _{0.9x}	0.77	X	2.63	X	72.63	X	0.63	X	0.7	=	58.37	(75)
Northeast _{0.9x}	0.77	X	1.19	X	72.63	X	0.63	X	0.7	=	26.41	(75)
Northeast _{0.9x}	0.77	X	2.13	X	72.63	X	0.63	x	0.7	=	47.28	(75)
Northeast _{0.9x}	0.77	X	2.13	X	50.42	X	0.63	X	0.7	=	32.82	(75)
Northeast _{0.9x}	0.77	X	1.19	X	50.42	X	0.63	x	0.7	=	18.34	(75)
Northeast _{0.9x}	0.77	X	2.63	x	50.42	x	0.63	x	0.7	=	40.53	(75)
Northeast _{0.9x}	0.77	X	1.19	x	50.42	x	0.63	x	0.7	=	18.34	(75)
Northeast _{0.9x}	0.77	X	2.13	x	50.42	x	0.63	x	0.7	=	32.82	(75)
Northeast _{0.9x}	0.77	x	2.13	x	28.07	x	0.63	x	0.7	=	18.27	(75)
Northeast _{0.9x}	0.77	x	1.19	x	28.07	x	0.63	x	0.7	=	10.21	(75)
Northeast _{0.9x}	0.77	x	2.63	x	28.07	x	0.63	x	0.7	=	22.56	(75)
Northeast _{0.9x}	0.77	x	1.19	x	28.07	x	0.63	x	0.7	=	10.21	(75)
Northeast _{0.9x}	0.77	x	2.13	x	28.07	x	0.63	x	0.7	=	18.27	(75)
Northeast _{0.9x}	0.77	x	2.13	x	14.2	x	0.63	x	0.7	j =	9.24	(75)
Northeast _{0.9x}	0.77	x	1.19	x	14.2	x	0.63	x	0.7	=	5.16	(75)
Northeast _{0.9x}	0.77	x	2.63	x	14.2	х	0.63	x	0.7	=	11.41	(75)
Northeast 0.9x	0.77	x	1.19	x	14.2	x	0.63	x	0.7	=	5.16	(75)
Northeast _{0.9x}	0.77	x	2.13	x	14.2	х	0.63	x	0.7	j =	9.24	(75)
Northeast _{0.9x}	0.77	x	2.13	x	9.21	х	0.63	X	0.7	j =	6	(75)
Northeast 0.9x	0.77	x	1.19	x	9.21	x	0.63	X	0.7	j =	3.35	(75)
Northeast _{0.9x}	0.77	x	2.63	x	9.21	x	0.63	x	0.7	j =	7.41	(75)
Northeast _{0.9x}	0.77	X	1.19	x	9.21	x	0.63	x	0.7	j =	3.35	(75)
Northeast _{0.9x}	0.77	X	2.13	x	9.21	X	0.63	X	0.7	=	6	(75)
Southeast 0.9x	0.77	X	1.47	x	36.79	X	0.63	x	0.7	=	16.53	(77)
Southeast 0.9x	0.77	X	1.19	X	36.79	X	0.63	x	0.7	=	13.38	(77)
Southeast 0.9x	0.77	X	1.19	X	36.79	X	0.63	X	0.7	=	13.38	(77)
Southeast 0.9x	0.77	X	1.19	x	36.79	x	0.63	X	0.7	=	13.38	(77)
Southeast 0.9x	0.77	X	0.56	X	36.79	X	0.63	X	0.7] =	6.3	(77)
		1		1		1		l	<u> </u>	1		_ ` ′

Southeast 0.9x 0.77		4.47	1 ,	00.07	1 ,	0.00	١ ,,	0.7	1 _	00.40	7(77)
0.11	X	1.47] X]	62.67] x] .,	0.63	X	0.7] =]	28.16	(77)
Courthoppet	X	1.19] X]	62.67] X]	0.63	X	0.7] = 1	22.79	(77)
On with a next	x	1.19] X]	62.67] X] .,	0.63	X	0.7] =]	22.79	(77)
Courthograf	x	1.19] X]	62.67] X]	0.63	X	0.7] =]	22.79	(77)
Couldback	X	0.56] X]	62.67] X]	0.63	X	0.7] = 1	10.73	(77)
	X	1.47] X]	85.75] X]	0.63	X	0.7] = 1	38.52	(77)
0 11 1	x	1.19] X]	85.75] X]	0.63	X	0.7] =]	31.19	(77)
On with a next	X	1.19] X]	85.75] X]	0.63	X	0.7] = 1	31.19	(77)
On with a next and	X	1.19] X]	85.75] X]	0.63	X	0.7] = 1	31.19	(77)
Courthoppet	X	0.56] X]	85.75] X]	0.63	X	0.7] =]	14.68	(77)
Courthoppet	X	1.47] X]	106.25] X]	0.63	X	0.7] = 1	47.73	(77)
0.77	X	1.19] X	106.25] X]	0.63	X	0.7] = 1	38.64	(77)
Southeast 0.9x 0.77	X	1.19] X]	106.25] X]	0.63	X	0.7] = 1	38.64	(77)
Southeast 0.9x 0.77	X	1.19	X	106.25] X]	0.63	X	0.7] = 1	38.64	(77)
Southeast 0.9x 0.77	X	0.56] X	106.25] X]	0.63	X	0.7] = 1	18.18	(77)
Southeast 0.9x 0.77		1.47	X	119.01] X]	0.63	X	0.7] = 1	53.47	(77)
Southeast 0.9x 0.77	X	1.19	X	119.01] X	0.63	X	0.7] = 1	43.28	(77)
Southeast 0.9x 0.77	X	1.19] X	119.01] X]	0.63	X	0.7] = 1	43.28	(77)
Southeast 0.9x 0.77	X	1.19	X	119.01	X	0.63	X	0.7	=	43.28	(77)
Southeast 0.9x 0.77	X	0.56	X	119.01	X	0.63	X	0.7	=	20.37	(77)
Southeast 0.9x 0.77	X	1.47	X	118.15	X	0.63	X	0.7	=	53.08	(77)
Southeast 0.9x 0.77	X	1.19	X	118.15	X	0.63	X	0.7	=	42.97	(77)
Southeast 0.9x 0.77	X	1.19	X	118.15	X	0.63	X	0.7	=	42.97	(77)
Southeast 0.9x 0.77	X	1.19	X	118.15	X	0.63	X	0.7	=	42.97	(77)
Southeast 0.9x 0.77	X	0.56	X	118.15	X	0.63	X	0.7	=	20.22	(77)
Southeast 0.9x 0.77	X	1.47	X	113.91	X	0.63	X	0.7	=	51.17	(77)
Southeast 0.9x 0.77	Х	1.19	X	113.91	X	0.63	X	0.7	=	41.43	(77)
Southeast 0.9x 0.77	X	1.19	X	113.91	X	0.63	X	0.7	=	41.43	(77)
Southeast 0.9x 0.77	X	1.19	X	113.91	X	0.63	X	0.7	=	41.43	(77)
Southeast 0.9x 0.77	X	0.56	X	113.91	X	0.63	X	0.7	=	19.49	(77)
Southeast 0.9x 0.77	X	1.47	X	104.39	X	0.63	X	0.7	=	46.9	(77)
Southeast 0.9x 0.77	X	1.19	X	104.39	X	0.63	X	0.7	=	37.96	(77)
Southeast 0.9x 0.77	X	1.19	X	104.39	X	0.63	X	0.7	=	37.96	(77)
Southeast 0.9x 0.77	Х	1.19	X	104.39	X	0.63	X	0.7	=	37.96	(77)
Southeast 0.9x 0.77	X	0.56	X	104.39	X	0.63	X	0.7	=	17.87	(77)
Southeast 0.9x 0.77	X	1.47	X	92.85	x	0.63	x	0.7] =	41.71	(77)
Southeast 0.9x 0.77	X	1.19	X	92.85	x	0.63	x	0.7	=	33.77	(77)
Southeast 0.9x 0.77	X	1.19	X	92.85	x	0.63	x	0.7] =	33.77	(77)
Southeast 0.9x 0.77	X	1.19	X	92.85	x	0.63	x	0.7] =	33.77	(77)
Southeast 0.9x 0.77	X	0.56	X	92.85	x	0.63	x	0.7] =	15.89	(77)
Southeast 0.9x 0.77	Х	1.47	×	69.27	x	0.63	X	0.7	=	31.12	(77)

		,		1		1		ı		,		_
Southeast 0.9x	0.77	X	1.19	X	69.27	X	0.63	X	0.7	=	25.19	(77)
Southeast 0.9x	0.77	X	1.19	X	69.27	X	0.63	X	0.7	=	25.19	(77)
Southeast 0.9x	0.77	X	1.19	X	69.27	X	0.63	X	0.7	=	25.19	(77)
Southeast 0.9x	0.77	X	0.56	X	69.27	X	0.63	X	0.7	=	11.85	(77)
Southeast 0.9x	0.77	X	1.47	X	44.07	X	0.63	X	0.7	=	19.8	(77)
Southeast 0.9x	0.77	X	1.19	x	44.07	X	0.63	X	0.7	=	16.03	(77)
Southeast 0.9x	0.77	X	1.19	x	44.07	X	0.63	X	0.7	=	16.03	(77)
Southeast 0.9x	0.77	X	1.19	x	44.07	X	0.63	x	0.7	=	16.03	(77)
Southeast 0.9x	0.77	X	0.56	X	44.07	X	0.63	X	0.7	=	7.54	(77)
Southeast 0.9x	0.77	X	1.47	x	31.49	X	0.63	X	0.7] =	14.15	(77)
Southeast 0.9x	0.77	X	1.19	x	31.49	x	0.63	x	0.7	=	11.45	(77)
Southeast 0.9x	0.77	X	1.19	x	31.49	x	0.63	x	0.7	=	11.45	(77)
Southeast 0.9x	0.77	X	1.19	x	31.49	X	0.63	x	0.7	=	11.45	(77)
Southeast 0.9x	0.77	X	0.56	x	31.49	X	0.63	x	0.7	=	5.39	(77)
Southwest _{0.9x}	0.77	X	0.56	x	36.79		0.63	x	0.7	=	6.3	(79)
Southwest _{0.9x}	0.77	X	6.62	x	36.79		0.63	X	0.7	=	74.44	(79)
Southwest _{0.9x}	0.77	X	2.13	x	36.79		0.63	X	0.7	=	23.95	(79)
Southwest _{0.9x}	0.77	X	1.19	x	36.79		0.63	x	0.7	=	13.38	(79)
Southwest _{0.9x}	0.77	X	0.56	x	62.67		0.63	x	0.7	=	10.73	(79)
Southwest _{0.9x}	0.77	X	6.62	x	62.67		0.63	X	0.7	=	126.8	(79)
Southwest _{0.9x}	0.77	X	2.13	x	62.67		0.63	x	0.7	=	40.8	(79)
Southwest _{0.9x}	0.77	X	1.19	x	62.67		0.63	x	0.7	=	22.79	(79)
Southwest _{0.9x}	0.77	X	0.56	x	85.75		0.63	X	0.7	=	14.68	(79)
Southwest _{0.9x}	0.77	X	6.62	x	85.75		0.63	X	0.7	=	173.49	(79)
Southwest _{0.9x}	0.77	X	2.13	x	85.75		0.63	x	0.7	=	55.82	(79)
Southwest _{0.9x}	0.77	X	1.19	x	85.75		0.63	X	0.7	=	31.19	(79)
Southwest _{0.9x}	0.77	X	0.56	x	106.25		0.63	x	0.7	=	18.18	(79)
Southwest _{0.9x}	0.77	X	6.62	x	106.25]	0.63	x	0.7	=	214.96	(79)
Southwest _{0.9x}	0.77	X	2.13	x	106.25		0.63	x	0.7	=	69.17	(79)
Southwest _{0.9x}	0.77	X	1.19	x	106.25		0.63	x	0.7	=	38.64	(79)
Southwest _{0.9x}	0.77	X	0.56	x	119.01]	0.63	x	0.7	=	20.37	(79)
Southwest _{0.9x}	0.77	X	6.62	x	119.01		0.63	X	0.7	=	240.78	(79)
Southwest _{0.9x}	0.77	X	2.13	х	119.01		0.63	x	0.7	=	77.47	(79)
Southwest _{0.9x}	0.77	x	1.19	x	119.01		0.63	x	0.7] =	43.28	(79)
Southwest _{0.9x}	0.77	X	0.56	x	118.15		0.63	x	0.7] =	20.22	(79)
Southwest _{0.9x}	0.77	X	6.62	x	118.15		0.63	x	0.7] =	239.04	(79)
Southwest _{0.9x}	0.77	x	2.13	x	118.15]	0.63	x	0.7	<u> </u>	76.91	(79)
Southwest _{0.9x}	0.77	x	1.19	х	118.15		0.63	x	0.7	j =	42.97	(79)
Southwest _{0.9x}	0.77	x	0.56	x	113.91]	0.63	x	0.7] =	19.49	(79)
Southwest _{0.9x}	0.77	x	6.62	х	113.91]	0.63	x	0.7	j =	230.46	(79)
Southwest _{0.9x}	0.77	x	2.13	х	113.91	Ì	0.63	x	0.7	j =	74.15	(79)
_		_		-		-		-		-		

		_														_
Southwest _{0.9x}	0.77	X	1.1	9	X	1	13.91		0.6	3	X	0.7		=	41.43	(79)
Southwest _{0.9x}	0.77	X	0.5	6	X	10	04.39		0.6	3	X	0.7		=	17.87	(79)
Southwest _{0.9x}	0.77	X	6.6	2	X	10	04.39		0.6	3	X	0.7		= [211.2	(79)
Southwest _{0.9x}	0.77	X	2.1	3	X	10	04.39		0.6	3	X	0.7		= [67.95	(79)
Southwest _{0.9x}	0.77	X	1.1	9	X	10	04.39		0.6	3	x	0.7		= [37.96	(79)
Southwest _{0.9x}	0.77	X	0.5	6	X	9	2.85		0.6	3	X	0.7		= [15.89	(79)
Southwest _{0.9x}	0.77	x	6.6	2	X	9	2.85		0.6	3	x	0.7		= [187.85	(79)
Southwest _{0.9x}	0.77	x	2.1	3	X	9	2.85	Ì	0.6	3	x	0.7		= [60.44	(79)
Southwest _{0.9x}	0.77	X	1.1	9	X	9	2.85	ĺ	0.6	3	x	0.7		= [33.77	(79)
Southwest _{0.9x}	0.77	x	0.5	6	X	6	9.27	ĺ	0.6	3	x	0.7		= [11.85	(79)
Southwest _{0.9x}	0.77	x	6.6	2	X	6	9.27	j	0.6	3	x	0.7		=	140.14	(79)
Southwest _{0.9x}	0.77	x	2.1	3	X	6	9.27	j	0.6	3	x	0.7		= [45.09	(79)
Southwest _{0.9x}	0.77	x	1.1	9	X	6	9.27	j	0.6	3	x	0.7		= [25.19	(79)
Southwest _{0.9x}	0.77	x	0.5	6	X	4	4.07	j	0.6	3	x	0.7		=	7.54	(79)
Southwest _{0.9x}	0.77	x	6.6	2	X	4	4.07	j	0.6	3	x	0.7		=	89.16	(79)
Southwest _{0.9x}	0.77	X	2.1	3	X	4	4.07	j	0.6	3	x	0.7		=	28.69	(79)
Southwest _{0.9x}	0.77	X	1.1	9	X	4	4.07	j	0.6	3	x	0.7		=	16.03	(79)
Southwest _{0.9x}	0.77	x	0.5	6	X	3	1.49	j	0.6	3	x	0.7		=	5.39	(79)
Southwest _{0.9x}	0.77	X	6.6	2	X	3	1.49	j	0.6	3	x	0.7		=	63.7	(79)
Southwest _{0.9x}	0.77	x	2.1	3	X	3	1.49	j	0.6	3	x	0.7		=	20.5	(79)
Southwest _{0.9x}	0.77	X	1.1	9	X	3	1.49	ĺ	0.6	3	x	0.7		=	11.45	(79)
_								•								_
Solar gains in	watts calc	ulated	for each	n montl	,			(83)m	n = Sum(7	4)m	(82)m					
(83)m= 213		39.16	715.32	844.36	$\overline{}$	57.24	818.57	719		<u> </u>	420.34	257.06	181.0	04		(83)
Total gains – i	nternal and	d solar	 (84)m =	: (73)m	+ (33)m	, watts	<u> </u>				<u> </u>				
(84)m= 886.12	1041.85 1	183.4	1321.86	1412.03	3 13	390.17	1331.24	1240	0.91 114	2.93 1	1001.4	8 880.44	836.6	62		(84)
7. Mean inter	nal tempo	raturo (heating	50250	2)								<u>. </u>			
Temperature						area f	from Tah	0 ماد	Th1 (°(<u>.)</u>				ſ	21	(85)
Utilisation fac	_	•			_)iC 0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>J</i>)				L	21	
Jan	Feb	Mar	Apr	May	Ť	Jun	Jul	Δ	ug S	ер	Oct	Nov	De			
(86)m= 0.97	0.95	0.92	0.84	0.72	+	0.56	0.42	0.4		68	0.88	0.95	0.98	-		(86)
	<u> </u>		!					<u> </u>			0.00	0.00				()
Mean interna (87)m= 19.26	19.52	19.9	20.36	20.71	$\overline{}$	w ste	20.97	20.			20.36	19.73	19.2	1		(87)
	ļļ							<u> </u>			20.00	10.70	10.2			(0.)
Temperature			T		$\overline{}$						40.0	10.70	107	$\overline{}$		(00)
(88)m= 19.77	19.78	19.78	19.79	19.8	1	9.81	19.81	19.	81 19).8	19.8	19.79	19.7	9		(88)
Utilisation fac	tor for gair	ns for r	est of dy	velling,	h2	m (se	e Table	9a)								
(89)m= 0.96	0.94	0.9	0.81	0.66		0.47	0.32	0.3	36 0	.6	0.84	0.94	0.97	7		(89)
Mean interna	l temperat	ure in t	he rest	of dwel	ling	T2 (f	ollow ste	ps 3	to 7 in	Table	9c)					
(90)m= 17.51	17.89	18.43	19.07	19.51	1	9.74	19.8	19.	79 19	.66	19.08	18.2	17.4	5		(90)
										fL/	A = Liv	ing area ÷ (4) =		0.3	(91)
Moon interne		/£a.	ماندر مطاهم	مرام مامد	منالہ	س/ دا	ΛΤ1	. /1	fl Λ\.	. та				_		-

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

(92)m=	18.03	18.37	18.87	19.45	19.87	20.09	20.14	20.14	20	19.46	18.65	17.97		(92)
Apply	/ adjustn	nent to t	he mean	internal	temper	ature fro	m Table	4e, whe	ere appro	priate				
(93)m=	17.88	18.22	18.72	19.3	19.72	19.94	19.99	19.99	19.85	19.31	18.5	17.82		(93)
8. Sp	ace hea	ting requ	uirement											
			ernal ter			ed at ste	ep 11 of	Table 9l	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
the u	tilisation		or gains		ble 9a			<u> </u>					1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			ains, hm			ı		1	1		ı		Ī	(0.4)
(94)m=	0.95	0.92	0.88	0.79	0.66	0.48	0.33	0.37	0.6	0.82	0.92	0.96		(94)
			W = (94)	<u> </u>									1	(05)
(95)m=	842.66	962.29	1037.52		926.75	672.09	444.58	465.3	687.06	825	814.38	801.19		(95)
		_	rnal tem	-									1	(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			an intern			i	- ' '		<u> </u>	Ī			1	(07)
			1675.22			712.5	453.15	478	771.21	1176.24	1547.35	1857.7		(97)
-			ement fo										1	
(98)m=	765.69	584.21	474.45	262	115.67	0	0	0	0	261.33	527.74	786.04		٦
								Tota	l per year	(kWh/year	r) = Sum(9	8) _{15,912} =	3777.14	(98)
Spac	e heatin	g require	ement in	kWh/m²	² /year								37.95	(99)
9a. En	ergy rec	uiremer	nts – Indi	vidual h	eating sy	ystems i	ncluding	micro-C	CHP)					
Spac	e heatir	ng:					_							
Fract	ion of sp	ace hea	t from se	econdar	y/supple	mentary	system						0	(201)
Fract	ion of sp	ace hea	it from m	ain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fract	ion of to	tal heatii	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Effici	encv of r	main spa	ace heat	ina svste	em 1								90.5	(206)
	-	-	ry/supple			n system	n %						0	(208)
Lillon						_		A	0	0-4	Nan	Dan		┛`
Cnaa	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Spac	765.69	584.21	ement (c 474.45	262	115.67	0	0	0	0	261.33	527.74	786.04	I	
<i>(</i>)						0	0			201.55	327.74	700.04		,
(211)n			4)] } x 1	<u> </u>						000.70	500.44	000.50	1	(211)
	846.06	645.54	524.25	289.5	127.81	0	0	0 Tata	0	288.76	583.14	868.56		7
								Tota	l (kWh/yea	ar) =Surri(2	211) _{15,1012}		4173.63	(211)
•		`	econdar	, , .	month									
	<u> </u>		00 ÷ (20										1	
(215)m=	0	0	0	0	0	0	0	0 Tata	0	0	0	0		7,
								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
	heating	•												
Outpu	t from wa 208.79	183.95	ter (calc 193.02	ulated al 172.79	oove) 169.16	150.9	144.69	159.09	158.91	179.19	189.77	203.68	I	
⊏#ioio			<u> </u>	172.79	109.10	150.9	144.09	159.09	156.91	179.19	109.77	203.06		7(040)
	ncy of w												79.8	(216)
(217)m=		87.68	87.12	85.92	83.82	79.8	79.8	79.8	79.8	85.82	87.4	88.07		(217)
		•	kWh/mo											
. ,	237.33	m x 100 209.79) ÷ (217) 221.55	m 201.1	201.8	189.1	181.31	199.36	199.14	208.79	217.13	231.28		
(/		· · ·	L		L	L··	L		I = Sum(2		L		2497.69	(219)
								. 5.0		/112			2431.03	(219)

Annual totals		k\Alb\uoor	kWh/voor
Space heating fuel used, main system 1	1	kWh/year	kWh/year 4173.63
Water heating fuel used			2497.69
Electricity for pumps, fans and electric k	keep-hot		
central heating pump:		30	(230c)
boiler with a fan-assisted flue		45	(230e)
Total electricity for the above, kWh/year	sum of (230a	a)(230g) =	75 (231)
Electricity for lighting			402.37 (232)
Electricity generated by PVs			-323.58 (233)
Total delivered energy for all uses (211))(221) + (231) + (232)(237b) =		6904.91 (338)
10a. Fuel costs - individual heating sys	stems:		
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 × 0.01 =	145.24 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	86.92 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	9.89 (249)
(if off-peak tariff, list each of (230a) to (2 Energy for lighting	230g) separately as applicable and app	bly fuel price according to $13.19 x 0.01 =$	
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 x 0.01 =	-42.68 (252)
Appendix Q items: repeat lines (253) an	nd (254) as needed		
Total energy cost	(245)(247) + (250)(254) =		372.45 (255)
11a. SAP rating - individual heating sys	stems		
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF)	$[(255) \times (256)] \div [(4) + 45.0] =$		1.08 (257)
SAP rating (Section 12)	na avatama inglissing miero CLID		84.9 (258)
12a. CO2 emissions – Individual heatir			
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	901.5 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	539.5 (264)
Space and water heating	(261) + (262) + (263) + (264) =		1441 (265)
Electricity for pumps, fans and electric k	keep-hot (231) x	0.519 =	38.93 (267)

Electricity for lighting	(232) x	0.519	=	208.83	(268)
Energy saving/generation technologies Item 1		0.519	=	-167.94	(269)
Total CO2, kg/year	sum	of (265)(271) =		1520.82	(272)
CO2 emissions per m²	(272	2) ÷ (4) =		15.28	(273)
El rating (section 14)				86	(274)
13a. Primary Energy					
	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	-		=		(261)
Space heating (main system 1) Space heating (secondary)	kWh/year	factor	=	kWh/year	(261) (263)
	kWh/year (211) x	factor 1.22		kWh/year 5091.83	_
Space heating (secondary)	kWh/year (211) x (215) x	1.22 3.07	=	kWh/year 5091.83	(263)

(232) x

Electricity for lighting

'Total Primary Energy

Primary energy kWh/m²/year

Item 1

Energy saving/generation technologies

1235.28

-993.38

8611.15

86.52

3.07

sum of (265)...(271) =

 $(272) \div (4) =$

(268)

(269)

(272)

(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2021

Property Details: 02-21-86514 009 3B5P [End]

Dwelling type: End-terrace House

Located in:EnglandRegion:West Pennines

Cross ventilation possible: Yes Number of storeys: 3

Front of dwelling faces: North East

Overshading: Average or unknown

None

Thermal mass parameter: Calculated 166.93

False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 339.44 (P1)

Transmission heat loss coefficient: 85.6

Summer heat loss coefficient: 425.02 (P2)

Overhangs:

Overhangs:

Night ventilation:

Orientation:	Ratio:	Z_overhangs:
South East (W_26)	0	1
South West (W_27)	0	1
North East (W_28)	0	1
North East (W_29)	0	1
South East (W_30)	0	1
South East (W_31)	0	1
South East (W_32)	0	1
North East (W_33)	0	1
North East (W_34)	0	1
South West (W_35)	0	1
North East (W_36)	0	1
South East (W_37)	0	1
South West (W_38)	0	1
South West (W_39)	0	1

Solar shading

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South East (W_26)	1	0.9	1	0.9	(P8)
South West (W_27)	1	0.9	1	0.9	(P8)
North East (W_28)	1	0.9	1	0.9	(P8)
North East (W_29)	1	0.9	1	0.9	(P8)
South East (W_30)	1	0.9	1	0.9	(P8)
South East (W_31)	1	0.9	1	0.9	(P8)
South East (W_32)	1	0.9	1	0.9	(P8)
North East (W_33)	1	0.9	1	0.9	(P8)
North East (W_34)	1	0.9	1	0.9	(P8)
South West (W_35)	1	0.9	1	0.9	(P8)
North East (W_36)	1	0.9	1	0.9	(P8)
South East (W_37)	1	0.9	1	0.9	(P8)
South West (W_38)	1	0.9	1	0.9	(P8)

SAP 2012 Overheating Assessment

South West (W_39)	1	0	.9	1		0.9	(P8)
Solar gains:							
Orientation		Area	Flux	g _	FF	Shading	Gains
South East (W_26)	0.9 x	1.47	112.1	0.63	0.7	0.9	58.86
South West (W_27)	0.9 x	0.56	112.1	0.63	0.7	0.9	22.42
North East (W_28)	0.9 x	2.13	89.66	0.63	0.7	0.9	68.21
North East (W_29)	0.9 x	1.19	89.66	0.63	0.7	0.9	38.11
South East (W_30)	0.9 x	1.19	112.1	0.63	0.7	0.9	47.65
South East (W_31)	0.9 x	1.19	112.1	0.63	0.7	0.9	47.65
South East (W_32)	0.9 x	1.19	112.1	0.63	0.7	0.9	47.65
North East (W_33)	0.9 x	2.63	89.66	0.63	0.7	0.9	84.23
North East (W_34)	0.9 x	1.19	89.66	0.63	0.7	0.9	38.11
South West (W_35)	0.9 x	6.62	112.1	0.63	0.7	0.9	265.09
North East (W_36)	0.9 x	2.13	89.66	0.63	0.7	0.9	68.21
South East (W_37)	0.9 x	0.56	112.1	0.63	0.7	0.9	22.42
South West (W_38)	0.9 x	2.13	112.1	0.63	0.7	0.9	85.29
South West (W_39)	0.9 x	1.19	112.1	0.63	0.7	0.9	47.65
						Total	941.58 (P3/P 4
Internal gains:							
					June	July	August
Internal gains					529.94	509.67	518.52
Total summer gains					1546.93	1451.25	1332.59 (P5)
Summer gain/loss ratio					3.64	3.41	3.14 (P6)
Mean summer external temperature (West Pennines)					14.7	16.4	16.3
Thermal mass temperature increment					0.83	0.83	0.83
Threshold temperature					19.17	20.65	20.27 (P7)
Likelihood of high internal temperature					Not significant	Slight	Not significant
Assessment of likelihood of high internal temperature:					<u>Slight</u>		