Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 Printed on 25 March 2021 at 11:23:27

Project Information:

Assessed By: Bradley Clarke (STRO012757) Building Type: End-terrace House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 74.24m²

Site Reference: Radcliffe Street - Royton Plot Reference: 02-21-86514 008 2B3P [End]

Address: 008_2B3P_End_

Client Details:

Name: Brookhouse Group

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 19.78 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

16.07 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 58.0 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 49.4 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.27 (max. 0.30)	0.27 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.12 (max. 0.25)	0.18 (max. 0.70)	OK
Roof	0.09 (max. 0.20)	0.09 (max. 0.35)	OK
Openings	1.20 (max. 2.00)	1.20 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Database: (rev 474, product index 017929):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi)

Efficiency 89.6 % SEDBUK2009

Minimum 88.0 % OK

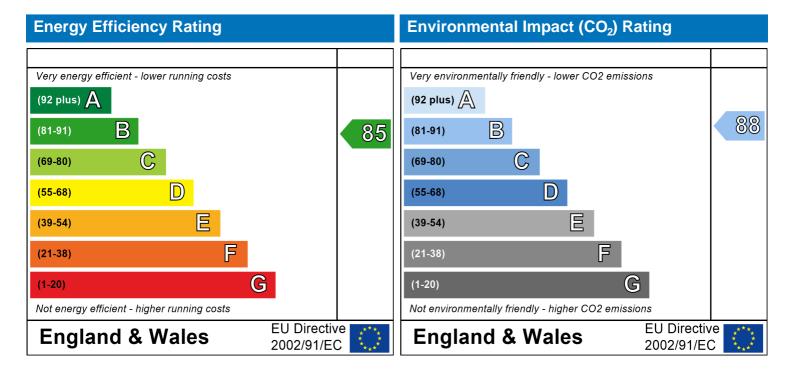
Secondary heating system: None

Regulations Compliance Report

ylinder insulation	No ovlinder				
Hot water Storage:	No cylinder				
ontrols					
Chara haating assistant		lantuinal annina	0		
Space heating controls Hot water controls:	TTZC by plumbing and el No cylinder thermostat	lectrical services	0		
not water controls.					
Boiler interlock:	No cylinder Yes				
ow energy lights	163		0		
Percentage of fixed lights w	vith low-energy fittings	100.0%			
Minimum	3, 3	75.0%	0		
echanical ventilation					
Not applicable					
ummertime temperature					
Overheating risk (West Per	nnines):	Not significant	0		
ed on:					
Overshading:		Average or unknown			
Windows facing: North Eas	t	2.63m²			
Windows facing: South We	st	2.63m²			
Windows facing: North Eas	t	1.19m²			
Windows facing: South We	st	2.13m²			
Windows facing: North Eas	t	2.13m²			
Windows facing: South We	st	1.19m²			
Windows facing: South We	st	2.13m²			
Windows facing: North Wes		2.63m²			
Windows facing: North Wes		0.56m²			
Ventilation rate:		4.00			
Key features		0.00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
Roofs U-value		0.09 W/m²K			
		0 W/m²K			
Party Walls U-value Floors U-value		0.12 W/m²K			

Photovoltaic array

Predicted Energy Assessment



008_2B3P_End_

Dwelling type: Date of assessment: Produced by: Total floor area: End-terrace House 19 March 2021 Bradley Clarke 74.24 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 02-21-86514 008 2B3P [End]

Address: 008_2B3P_End_
Located in: England
Region: West Pennines

UPRN:

Date of assessment: 19 March 2021 Date of certificate: 25 March 2021

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown
No related party
Calculated 170.14

Thermal Mass Parameter: Calculated 170 Water use <= 125 litres/person/day: True

PCDF Version: 474

Property description:

Dwelling type: House
Detachment: End-terrace
Year Completed: 2021

Floor Location: Floor area:

Floor 0 36.51 m^2 2.4 m Floor 1 37.73 m^2 2.69 m

Living area: 29.5 m² (fraction 0.397)

Front of dwelling faces: North East

\sim				
	mar	บทด	- † \ /	pes:
\sim	יטכו	mu	ιv	vcs.

W_20

Name:	Source:	Type:	Glazing:		Argon:	Frame:
D_3	Manufacturer	Solid				
W_17	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_18	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_19	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_20	Manufacturer	Windows	low-E, $En = 0.05$	No		
W_21	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_22	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_23	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_24	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
W_25	Manufacturer	Windows	low-E, $En = 0.05$	5, soft coat	No	
Name:	Gap:	Frame Factor:	g-value:	U-value:	Area:	No. of Openings:
D_3	mm	0	0	1.2	2.1	1
W_17		0.7	0.63	1.2	2.63	1
W_18		0.7	0.63	1.2	2.63	1
W_19		0.7	0.63	1.2	1.19	1
W_20		0.7	0.63	1.2	2.13	1
W_21		0.7	0.63	1.2	2.13	1
W_22		0.7	0.63	1.2	1.19	1
W_23		0.7	0.63	1.2	2.13	1
W_24		0.7	0.63	1.2	2.63	1
W_25		0.7	0.63	1.2	0.56	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D_3	Doors	External Wall	North East		2.1	1
_ W_17	Windows	External Wall	North East		2.63	1
_ W_18	Windows	External Wall	South West		2.63	1
W_19	Windows	External Wall	North East		1.19	1

South West

External Wall

Storey height:

Windows

1

2.13

SAP Input

W_21	Windows	External Wall	North East	2.13	1
W_22	Windows	External Wall	South West	1.19	1
W_23	Windows	External Wall	South West	2.13	1
W_24	Windows	External Wall	North West	2.63	1
W_25	Windows	External Wall	North West	0.56	1

Overshading: Average or unknown

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemen	<u>ts</u>						
External Wall	90.4	19.32	71.08	0.27	0	False	60
Roof insulated at of	ceiling 37.73	0	37.73	0.09	0		9
Ground Floor	36.51			0.12			110
Exposed Floor	1.22			0.18			20
Internal Elemen	<u>ts</u>						
Stud	130						9
Ceiling	37.73						9
Floor	37.73						18
Party Elements							
Party Wall	39.95						45

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0518

Osci aciiica	(marviadar i Si	values
Length	Psi-value	
11.15	0.024	E2
6.4	0.015	E3
34.7	0.01	E4
18.18	0.092	E5
2.34	0.32	E20
2.34	0.32	E21
15.06	0	E6
9.18	0.06	E10
8.22	0.084	E12
12.58	0.062	E16
2.4	-0.106	E17
10.18	0.079	E18
2.4	0.12	E25
0	-0.002	E11
0	0.073	E13
7.44	0.16	P1
8.22	0	P2
8.22	0.081	P4
0	0.16	P7
0	0.035	P5
0	0.08	R1
0	0.06	R2
0	0.08	R3
0	0.04	R5
0	0.04	R7
0	0.06	R8
0	0.04	R9

Ventilation

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

SAP Input

Number of chimneys:0Number of open flues:0Number of fans:4Number of passive stacks:0Number of sides sheltered:2Pressure test:5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 474, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.393

Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South West

Assess Zero Carbon Home: No

		User Det	ails:				
Assessor Name:	Bradley Clarke		troma Num	her:	STRO	012757	
Software Name:	Stroma FSAP 2012		oftware Ve			n: 1.0.5.33	
		Property Ad	dress: 02-21-	86514 008 2B3F	[End]		
Address :	008_2B3P_End_						
1. Overall dwelling dime	ensions:						
		Area(r		Av. Height(m)	_	Volume(m³)	_
Ground floor		36.5	(1a) x	2.4	(2a) =	87.62	(3a)
First floor		37.7	(1b) x	2.69	(2b) =	101.49	(3b)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+	(1n) 74.2	(4)				
Dwelling volume			(3a)+(3b)+(3c)+(3d)+(3e)+	(3n) =	189.12	(5)
2. Ventilation rate:							
		ondary ot iting	her 	total		m³ per hou	r
Number of chimneys	0 +	0 +	0 =	0 x	40 =	0	(6a)
Number of open flues	0 +	0 +	0 =	0 x	20 =	0	(6b)
Number of intermittent fa	ns			4 ×	10 =	40	(7a)
Number of passive vents				0 x	10 =	0	(7b)
Number of flueless gas fi	res		Ī	0 x	40 =	0	(7c)
			_		A : la		<u> </u>
Inditantian due to object	us flues and fans (60).	(6h)		1		anges per ho	_
Infiltration due to chimne	een carried out or is intended,				÷ (5) =	0.21	(8)
Number of storeys in the		, ,,		() ()		0	(9)
Additional infiltration				[(9)	-1]x0.1 =	0	(10)
	.25 for steel or timber fra		•	ruction		0	(11)
if both types of wall are pa deducting areas of openir	resent, use the value correspor ngs): if equal user 0.35	nding to the greater	wall area (after				
= -	loor, enter 0.2 (unsealed) or 0.1 (sealed)	, else enter 0			0	(12)
If no draught lobby, en	ter 0.05, else enter 0					0	(13)
Percentage of windows	s and doors draught strip	ped				0	(14)
Window infiltration			25 - [0.2 x (14) ÷ 1			0	(15)
Infiltration rate				12) + (13) + (15) =		0	(16)
•	q50, expressed in cubic	·		etre of envelope	area	5	(17)
If based on air permeabil	Ity Value, then $(10) = 1(17)$ is if a pressurisation test has be			is haing used		0.46	(18)
Number of sides sheltere		err done or a degre	е ан реннеавшу	is being useu		2	(19)
Shelter factor		(20	0) = 1 - [0.075 x (19)] =		0.85	(20)
Infiltration rate incorporat	ing shelter factor	(2	1) = (18) x (20) =			0.39	(21)
Infiltration rate modified f	or monthly wind speed						_
Jan Feb	Mar Apr May	Jun Jul	Aug Sep	Oct Nov	Dec		
Monthly average wind sp	eed from Table 7						

4.4

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

(22)m=

Wind Factor (2	2a)m =	(22)m ÷	4									
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	
	_								<u>!</u>			
Adjusted infiltra		<u> </u>				` 	`	` ´		0.44		
0.5 Calculate effec	0.49 Ctive air	0.48 chanae	0.43 rate for t	0.42 he appli	0.37 cable ca	0.37 S e	0.36	0.39	0.42	0.44	0.46	
If mechanica		_			- C.I.O. T. G. G.							0 (23a)
If exhaust air he	eat pump	using Appe	endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)		ĺ	0 (23b)
If balanced with	heat reco	overy: effic	iency in %	allowing for	or in-use f	actor (from	n Table 4h) =			ĺ	0 (23c)
a) If balance	d mech	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [1	I – (23c)	÷ 100]
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0	(24a)
b) If balance	d mech	anical ve	entilation	without	heat rec	covery (N	MV) (24b	m = (22)	2b)m + (2	23b)		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0	(24b)
c) If whole h				•	-							
if (22b)m		<u> </u>	· ` `		<u> </u>	· ` `	_``		<u> </u>	i e		(0.4.)
(24c)m = 0	0	0	0	0	0	0	0	0	0	0	0	(24c)
d) If natural i if (22b)m									0.51			
(24d)m = 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61	(24d)
Effective air		<u> </u>				<u> </u>						
(25)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61	(25)
3 Heat losses	s and he	eat loss i	paramete	er.								
3. Heat losses	s and he Gros area	SS	oaramete Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²·ł	
	Gros	SS	Openin	gs					A X U (W/I	<) 		
ELEMENT	Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	<) 		K kJ/K
ELEMENT Doors	Gros area	SS	Openin	gs	A ,r	m ² x x x 1/2	W/m2	eK = 0.04] =	(W/I	<) 		(kJ/K (26)
ELEMENT Doors Windows Type	Gros area	SS	Openin	gs	A ,r 2.1 2.63	m ² x x1/2 x1/2	W/m2 1.2 /[1/(1.2)+	eK = 0.04] = 0.04] =	2.52 3.01	<) 		(kJ/K (26) (27) (27)
ELEMENT Doors Windows Type Windows Type	Gros area 1 2 2	SS	Openin	gs	A ,r 2.1 2.63 2.63	x10	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04] = 0.04] =	2.52 3.01 3.01	<) 		(26) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type	Gros area 1 2 2 2 3 4 4	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04] = 0.04] = 0.04] =	2.52 3.01 3.01 1.36	<) 		(26) (27) (27) (27) (27)
Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19 2.13	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.52 3.01 3.01 1.36 2.44 2.44	<)		(26) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5 6 6	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19 2.13 2.13	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04]	(W/I 2.52 3.01 3.01 1.36 2.44 2.44 1.36	<)		(26) (27) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type	Gros area 1 2 2 3 4 4 5 5 6 6 7	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19 2.13 2.13 2.13	x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04]	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44	<)		(26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19 2.13 2.13 2.13 2.13 2.13	x10	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01	<)		(26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.1 2.63 2.63 1.19 2.13 2.13 2.13 2.13 0.56	x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64		kJ/m²-ł	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Floor Type 1	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.1 2.63 1.19 2.13 1.19 2.13 2.63 0.56 36.51	x10	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812		kJ/m²-ł	(26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Floor Type 1 Floor Type 2	Gros area 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9	ss (m²)	Openin	gs ²	A ,r 2.1 2.63 1.19 2.13 2.13 1.19 2.13 2.63 0.56 36.51	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812		110 20	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Floor Type 1 Floor Type 2 Walls	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 90.	ss (m²)	Openin m	gs ²	A ,r 2.1 2.63 1.19 2.13 2.13 1.19 2.13 2.63 0.56 36.51 1.22	x10	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812 0.2196		110 20 60	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Wi	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 90.4	ss (m²)	Openin	gs ²	A ,r 2.1 2.63 1.19 2.13 2.13 1.19 2.13 2.63 0.56 36.51 1.22 71.08	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812		110 20	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Tloor Type 1 Floor Type 2 Walls Roof Total area of e	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 90.4	ss (m²)	Openin m	gs ²	A ,r 2.1 2.63 1.19 2.13 1.19 2.13 2.63 0.56 36.51 1.22 71.08 37.73	x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.18 0.27 0.09	K	(W/I 2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812 0.2196 19.19		110 20 60 9	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Wi	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 90.4 37.7 Iements	ss (m²)	Openin m	gs ²	A ,r 2.1 2.63 1.19 2.13 2.13 1.19 2.13 2.63 0.56 36.51 1.22 71.08	x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4	W/m2 1.2 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	2.52 3.01 3.01 1.36 2.44 2.44 1.36 2.44 3.01 0.64 4.3812 0.2196		110 20 60	(kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

Internal floor (32d) 679.14 37.73 18 Internal ceiling 37.73 9 339.57 (32e)* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions (26)...(30) + (32) =Fabric heat loss, $W/K = S(A \times U)$ (33)49.43 Heat capacity $Cm = S(A \times k)$ ((28)...(30) + (32) + (32a)...(32e) =(34)12631.33 Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K $= (34) \div (4) =$ (35)170.14 For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation. Thermal bridges: S (L x Y) calculated using Appendix K (36)8.6 if details of thermal bridging are not known (36) = $0.05 \times (31)$ Total fabric heat loss (33) + (36) =(37)58.02 Ventilation heat loss calculated monthly (38)m = $0.33 \times (25)$ m x (5)Feb May Jul Jan Mar Apr Jun Aug Sep Oct Nov Dec 39.01 38.71 37.83 (38)38.41 37.01 36.75 35.54 35.54 35.31 36.01 36.75 37.28 (38)m =Heat transfer coefficient, W/K (39)m = (37) + (38)m (39)m =97.03 96.73 96.43 95.04 94.78 93.56 93.56 93.33 94.03 94.78 95.3 95.86 (39)Average = $Sum(39)_{1...12}/12=$ 95.04 Heat loss parameter (HLP), W/m2K (40)m = (39)m \div (4)1.31 (40)m =1.3 1.28 1.26 1.26 1.26 1.27 1.28 1.28 1.29 (40)Average = $Sum(40)_{1...12}/12=$ 1.28 Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sen Oct Nov Dec (41)m =31 28 31 30 31 30 31 31 30 31 30 31 (41)4. Water heating energy requirement: kWh/year: Assumed occupancy, N 2.34 (42)if TFA > 13.9, N = 1 + 1.76 x [1 - $\exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, N = 1Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 89.88 (43)Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Oct Jan Feb Mar Apr May Jun Jul Aug Sep Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)(44)m =98.87 95.28 91.68 88.08 84.49 80.89 80.89 84.49 88.08 91.68 95.28 98.87 (44)Total = $Sum(44)_{1...12}$ = 1078.59 Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m =146.62 128.24 132.33 115.37 110.7 95.52 88.52 101.57 102.79 119.79 130.76 142 Total = $Sum(45)_{1...12}$ = 1414.2 (45)If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)(46)m =21.99 19.24 19.85 17.31 16.6 14.33 13.28 15.24 15.42 17.97 19.61 21.3 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss:

a) If manufacturer's declared loss factor is known (kWh/day):		0	(48)
Temperature factor from Table 2b		0	(49)
	48) x (49) =	0	(50)
b) If manufacturer's declared cylinder loss factor is not known:			I
Hot water storage loss factor from Table 2 (kWh/litre/day) If community heating see section 4.3		0	(51)
Volume factor from Table 2a		0	(52)
Temperature factor from Table 2b		0	(53)
Energy lost from water storage, kWh/year	47) x (51) x (52) x (53) =	0	(54)
Enter (50) or (54) in (55)		0	(55)
Water storage loss calculated for each month	(56) m = $(55) \times (41)$ m		•
(56)m= 0 0 0 0 0 0 0	0 0 0	0 0	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷ (50)	i), else (57)m = (56)m where (H11) is from Append	I lix H
(57)m= 0 0 0 0 0 0 0	0 0 0	0 0	(57)
	I	0	(58)
Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365	5 x (41)m	0	(00)
(modified by factor from Table H5 if there is solar water heating	,	stat)	
(59)m= 0 0 0 0 0 0 0	0 0 0	0 0	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)r		l l	
(61)m= 14.1 12.72 14.05 13.56 13.98 13.5 13.93	13.96 13.53 14.02	13.61 14.09	(61)
Total heat required for water heating calculated for each month (` ′
(62)m= 160.73 140.96 146.38 128.92 124.68 109.02 102.45	115.54 116.32 133.81	144.37 156.09	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity)			(62)
(add additional lines if FGHRS and/or WWHRS applies, see App		ion to water neating)	
(63)m= 0 0 0 0 0 0 0 0	0 0 0	0 0	(63)
Output from water heater	· l · l ·		` '
	115.54 116.32 133.81	144.37 156.09	
(6.7)	Output from water heate		1579.25 (64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45)m	•	,	i · · ·
(65)m= 52.28 45.82 47.51 41.75 40.3 35.14 32.91	37.26 37.56 43.33	46.88 50.74	(65)
include (57)m in calculation of (65)m only if cylinder is in the d			
5. Internal gains (see Table 5 and 5a):	weiling of flot water is if	om community i	leating
,			
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Aug Sep Oct	Nov Dec	1
(66)m= 140.67 140.67 140.67 140.67 140.67 140.67 140.67	140.67 140.67 140.67	140.67 140.67	(66)
` '	<u> </u>	140.07	(55)
Lighting gains (calculated in Appendix L, equation L9 or L9a), als (67)m= 46.13 40.97 33.32 25.23 18.86 15.92 17.2	22.36 30.01 38.11	44.48 47.41	(67)
	ļ ļ	44.40 47.41	(07)
Appliances gains (calculated in Appendix L, equation L13 or L13 (68)m= 308.93 312.14 304.06 286.86 265.15 244.75 231.12	' । 	274.0 205.2	(68)
	227.91 235.99 253.19	274.9 295.3	(00)
Cooking gains (calculated in Appendix L, equation L15 or L15a),			(00)
(69)m= 51.41 51.41 51.41 51.41 51.41 51.41 51.41	51.41 51.41 51.41	51.41 51.41	(69)
Pumps and fans gains (Table 5a)			(70)
(70)m= 3 3 3 3 3 3 3 3	3 3 3	3 3	(70)

Losses e.g. evaporation (negative values) (Table 5)														
(71)m=	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78		(71)
Water heating gains (Table 5)														
(72)m=	70.27	68.18	63.86	57.98	54.17	48.8	44.24	50.09	52.17	58.25	65.11	68.19		(72)
Total i	nternal	gains =		-	-	(66)	m + (67)m	ı + (68)m +	+ (69)m + (70)m + (7	1)m + (72)	m	•	
(73)m=	526.63	522.6	502.54	471.37	439.48	410.77	393.86	401.66	419.47	450.84	485.79	512.21		(73)
6. Sol	ar gains	S:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation

Orientation:	Access Facto Table 6d	r	Area m²	Flux Table 6a			g_ Table 6b		FF Table 6c	Gains (W)		
Northeast 0.9x	0.77	x	2.63	x	11.28	x	0.63	x	0.7] =	9.07	(75)
Northeast 0.9x	0.77	x	1.19	x	11.28	x	0.63	x	0.7] =	4.1	(75)
Northeast 0.9x	0.77	x	2.13	x	11.28	x	0.63	x	0.7] =	7.34	(75)
Northeast 0.9x	0.77	x	2.63	x	22.97	x	0.63	x	0.7] =	18.46	(75)
Northeast 0.9x	0.77	x	1.19	x	22.97	x	0.63	x	0.7] =	8.35	(75)
Northeast 0.9x	0.77	x	2.13	x	22.97	x	0.63	x	0.7] =	14.95	(75)
Northeast 0.9x	0.77	x	2.63	x	41.38	х	0.63	x	0.7] =	33.26	(75)
Northeast 0.9x	0.77	x	1.19	x	41.38	х	0.63	x	0.7] =	15.05	(75)
Northeast 0.9x	0.77	x	2.13	x	41.38	x	0.63	x	0.7] =	26.94	(75)
Northeast 0.9x	0.77	x	2.63	x	67.96	х	0.63	x	0.7] =	54.62	(75)
Northeast 0.9x	0.77	x	1.19	x	67.96	х	0.63	x	0.7] =	24.71	(75)
Northeast 0.9x	0.77	x	2.13	X	67.96	x	0.63	x	0.7	=	44.24	(75)
Northeast 0.9x	0.77	x	2.63	X	91.35	x	0.63	x	0.7	=	73.42	(75)
Northeast _{0.9x}	0.77	x	1.19	X	91.35	x	0.63	x	0.7	=	33.22	(75)
Northeast _{0.9x}	0.77	x	2.13	x	91.35	x	0.63	x	0.7] =	59.46	(75)
Northeast _{0.9x}	0.77	x	2.63	x	97.38	x	0.63	x	0.7] =	78.27	(75)
Northeast _{0.9x}	0.77	x	1.19	X	97.38	X	0.63	x	0.7] =	35.42	(75)
Northeast _{0.9x}	0.77	x	2.13	x	97.38	x	0.63	x	0.7	=	63.39	(75)
Northeast _{0.9x}	0.77	x	2.63	x	91.1	x	0.63	x	0.7	=	73.22	(75)
Northeast _{0.9x}	0.77	x	1.19	X	91.1	x	0.63	x	0.7	=	33.13	(75)
Northeast 0.9x	0.77	x	2.13	x	91.1	x	0.63	x	0.7	=	59.3	(75)
Northeast _{0.9x}	0.77	x	2.63	x	72.63	x	0.63	x	0.7	=	58.37	(75)
Northeast _{0.9x}	0.77	x	1.19	X	72.63	x	0.63	x	0.7	=	26.41	(75)
Northeast 0.9x	0.77	x	2.13	x	72.63	x	0.63	x	0.7	=	47.28	(75)
Northeast _{0.9x}	0.77	x	2.63	X	50.42	х	0.63	x	0.7	=	40.53	(75)
Northeast _{0.9x}	0.77	x	1.19	X	50.42	X	0.63	x	0.7] =	18.34	(75)
Northeast _{0.9x}	0.77	x	2.13	x	50.42	x	0.63	x	0.7] =	32.82	(75)
Northeast 0.9x	0.77	x	2.63	x	28.07	x	0.63	x	0.7] =	22.56	(75)
Northeast 0.9x	0.77	x	1.19	x	28.07	x	0.63	x	0.7] =	10.21	(75)
Northeast 0.9x	0.77	x	2.13	x	28.07	x	0.63	x	0.7] =	18.27	(75)

Northoost on F		1		1		1		ı		1		7(75)
Northeast 0.9x	0.77	X	2.63	X	14.2	X	0.63	X	0.7] =	11.41	(75)
Northeast 0.9x	0.77	X	1.19	X	14.2	X	0.63	X	0.7] =	5.16	(75)
Northeast 0.9x	0.77	X	2.13	X	14.2	X	0.63	X	0.7] =	9.24	(75)
Northeast _{0.9x}	0.77	X	2.63	X	9.21	X	0.63	X	0.7] =	7.41	(75)
Northeast _{0.9x}	0.77	X	1.19	X	9.21	X	0.63	X	0.7] =	3.35	(75)
Northeast _{0.9x}	0.77	X	2.13	X	9.21	X	0.63	X	0.7] =	6	(75)
Southwest _{0.9x}	0.77	X	2.63	X	36.79	<u> </u>	0.63	X	0.7] =	29.57	(79)
Southwest _{0.9x}	0.77	X	2.13	x	36.79		0.63	X	0.7	=	23.95	(79)
Southwest _{0.9x}	0.77	X	1.19	X	36.79	_	0.63	X	0.7	=	13.38	(79)
Southwest _{0.9x}	0.77	X	2.13	X	36.79	_	0.63	X	0.7	=	23.95	(79)
Southwest _{0.9x}	0.77	X	2.63	x	62.67	<u> </u>	0.63	X	0.7	=	50.37	(79)
Southwest _{0.9x}	0.77	X	2.13	X	62.67]	0.63	X	0.7	_ =	40.8	(79)
Southwest _{0.9x}	0.77	X	1.19	x	62.67	<u> </u>	0.63	X	0.7	=	22.79	(79)
Southwest _{0.9x}	0.77	X	2.13	X	62.67		0.63	X	0.7	=	40.8	(79)
Southwest _{0.9x}	0.77	X	2.63	X	85.75		0.63	X	0.7] =	68.92	(79)
Southwest _{0.9x}	0.77	X	2.13	x	85.75]	0.63	x	0.7	=	55.82	(79)
Southwest _{0.9x}	0.77	X	1.19	X	85.75]	0.63	X	0.7] =	31.19	(79)
Southwest _{0.9x}	0.77	X	2.13	x	85.75]	0.63	X	0.7	=	55.82	(79)
Southwest _{0.9x}	0.77	X	2.63	x	106.25]	0.63	X	0.7	=	85.4	(79)
Southwest _{0.9x}	0.77	X	2.13	X	106.25]	0.63	X	0.7	=	69.17	(79)
Southwest _{0.9x}	0.77	X	1.19	x	106.25]	0.63	X	0.7	=	38.64	(79)
Southwest _{0.9x}	0.77	X	2.13	x	106.25]	0.63	x	0.7] =	69.17	(79)
Southwest _{0.9x}	0.77	X	2.63	X	119.01]	0.63	X	0.7	=	95.66	(79)
Southwest _{0.9x}	0.77	X	2.13	x	119.01]	0.63	x	0.7] =	77.47	(79)
Southwest _{0.9x}	0.77	X	1.19	x	119.01]	0.63	x	0.7] =	43.28	(79)
Southwest _{0.9x}	0.77	X	2.13	x	119.01]	0.63	x	0.7	=	77.47	(79)
Southwest _{0.9x}	0.77	X	2.63	x	118.15]	0.63	x	0.7] =	94.96	(79)
Southwest _{0.9x}	0.77	x	2.13	x	118.15]	0.63	x	0.7	=	76.91	(79)
Southwest _{0.9x}	0.77	X	1.19	x	118.15]	0.63	x	0.7	=	42.97	(79)
Southwest _{0.9x}	0.77	X	2.13	x	118.15]	0.63	x	0.7] =	76.91	(79)
Southwest _{0.9x}	0.77	x	2.63	x	113.91]	0.63	x	0.7	=	91.56	(79)
Southwest _{0.9x}	0.77	x	2.13	x	113.91]	0.63	x	0.7	=	74.15	(79)
Southwest _{0.9x}	0.77	X	1.19	x	113.91]	0.63	x	0.7	=	41.43	(79)
Southwest _{0.9x}	0.77	x	2.13	x	113.91]	0.63	x	0.7	=	74.15	(79)
Southwest _{0.9x}	0.77	X	2.63	x	104.39]	0.63	x	0.7	=	83.91	(79)
Southwest _{0.9x}	0.77	x	2.13	x	104.39]	0.63	x	0.7] =	67.95	(79)
Southwest _{0.9x}	0.77	x	1.19	x	104.39]	0.63	x	0.7	j =	37.96	(79)
Southwest _{0.9x}	0.77	x	2.13	x	104.39]	0.63	x	0.7	j =	67.95	(79)
Southwest _{0.9x}	0.77	x	2.63	x	92.85	Ī	0.63	x	0.7] =	74.63	(79)
Southwest _{0.9x}	0.77	x	2.13	x	92.85	Ī	0.63	x	0.7] =	60.44	(79)
Southwest _{0.9x}	0.77	x	1.19	×	92.85	Ī	0.63	x	0.7] =	33.77	(79)
_		-		-		•		•		-		_

		_		,		,		_ ,				_
Southwest _{0.9x}	0.77	X	2.13	X	92.85	<u> </u>	0.63	x	0.7	=	60.44	(79)
Southwest _{0.9x}	0.77	X	2.63	X	69.27]	0.63	X	0.7	=	55.67	(79)
Southwest _{0.9x}	0.77	X	2.13	X	69.27]	0.63	X	0.7	=	45.09	(79)
Southwest _{0.9x}	0.77	X	1.19	X	69.27		0.63	x	0.7	=	25.19	(79)
Southwest _{0.9x}	0.77	X	2.13	X	69.27		0.63	X	0.7	=	45.09	(79)
Southwest _{0.9x}	0.77	X	2.63	X	44.07]	0.63	X	0.7	=	35.42	(79)
Southwest _{0.9x}	0.77	X	2.13	X	44.07]	0.63	x	0.7	=	28.69	(79)
Southwest _{0.9x}	0.77	X	1.19	X	44.07]	0.63	X	0.7	=	16.03	(79)
Southwest _{0.9x}	0.77	X	2.13	X	44.07		0.63	x	0.7	=	28.69	(79)
Southwest _{0.9x}	0.77	X	2.63	X	31.49]	0.63	X	0.7	=	25.31	(79)
Southwest _{0.9x}	0.77	x	2.13	X	31.49]	0.63	x	0.7	=	20.5	(79)
Southwest _{0.9x}	0.77	х	1.19	X	31.49]	0.63	x	0.7	=	11.45	(79)
Southwest _{0.9x}	0.77	x	2.13	x	31.49]	0.63	x	0.7	=	20.5	(79)
Northwest 0.9x	0.77	x	2.63	x	11.28	x	0.63	x	0.7	=	9.07	(81)
Northwest 0.9x	0.77	x	0.56	x	11.28	x	0.63	x	0.7	=	1.93	(81)
Northwest _{0.9x}	0.77	x	2.63	x	22.97	x	0.63	x	0.7	=	18.46	(81)
Northwest _{0.9x}	0.77	х	0.56	x	22.97	х	0.63	x	0.7	=	3.93	(81)
Northwest _{0.9x}	0.77	х	2.63	x	41.38	х	0.63	x	0.7	=	33.26	(81)
Northwest _{0.9x}	0.77	x	0.56	x	41.38	x	0.63	x	0.7	=	7.08	(81)
Northwest _{0.9x}	0.77	x	2.63	x	67.96	x	0.63	x	0.7	=	54.62	(81)
Northwest _{0.9x}	0.77	×	0.56	X	67.96	x	0.63	×	0.7		11.63	(81)
Northwest _{0.9x}	0.77	×	2.63	j×	91.35	x	0.63	×	0.7	-	73.42	(81)
Northwest _{0.9x}	0.77	x	0.56	X	91.35	x	0.63	×	0.7	_ =	15.63	(81)
Northwest _{0.9x}	0.77	×	2.63	X	97.38	x	0.63	×	0.7	<u> </u>	78.27	(81)
Northwest _{0.9x}	0.77	x	0.56	X	97.38	x	0.63	×	0.7	-	16.67	(81)
Northwest 0.9x	0.77	x	2.63	X	91.1	x	0.63	×	0.7	= =	73.22	(81)
Northwest _{0.9x}	0.77	x	0.56	X	91.1	X	0.63	×	0.7	-	15.59	(81)
Northwest _{0.9x}	0.77	x	2.63	X	72.63	X	0.63	×	0.7	=	58.37	(81)
Northwest _{0.9x}	0.77	x	0.56	X	72.63	X	0.63	×	0.7	=	12.43	(81)
Northwest 0.9x	0.77	x	2.63	X	50.42	X	0.63	×	0.7	=	40.53	(81)
Northwest 0.9x	0.77	x	0.56) 	50.42	X	0.63	×	0.7	=	8.63	(81)
Northwest 0.9x	0.77	x	2.63) x	28.07	X	0.63	x	0.7	=	22.56	(81)
Northwest 0.9x	0.77	x	0.56) x	28.07) x	0.63	×	0.7	=	4.8	(81)
Northwest _{0.9x}	0.77	x	2.63) X	14.2) x	0.63	×	0.7		11.41	(81)
Northwest 0.9x	0.77	×	0.56	X	14.2]] x	0.63	_	0.7	= =	2.43	(81)
Northwest _{0.9x}	0.77	×	2.63) X	9.21]] x	0.63	x	0.7	=	7.41	(81)
Northwest 0.9x	0.77	×	0.56]]	9.21]] x	0.63		0.7	= =	1.58	(81)
5.5A	0.11	^_	0.00	J	Ų. <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1	0.00	^	<u> </u>		1.00	(- ·)
Solar gains in v	watts. calc	ulated	for each mon	th		(83)m	n = Sum(74)m	(82)m				
(83)m= 122.37		27.34	452.19 549.0	$\overline{}$	63.78 535.76	460		249.45	148.48	103.49		(83)
Total gains – ir	nternal and	solar	(84)m = (73) r	n + (83)m , watts		<u> </u>		1	<u> </u>	I	
(84)m= 649.01	741.51 83	29.88	923.57 988.5	2 9	74.55 929.62	862	.31 789.59	700.29	634.27	615.7		(84)
				•	· · ·	•		•	•		•	

7. Me	an inter	nal temp	perature	(heating	ı season)								
				·		•	from Tal	ole 9, Th	1 (°C)				21	(85)
•		•	•			(see Ta		,	()					``
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	0.97	0.96	0.92	0.85	0.73	0.57	0.43	0.48	0.7	0.89	0.96	0.98		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	19.39	19.62	19.97	20.4	20.74	20.92	20.98	20.97	20.84	20.4	19.82	19.35		(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	able 9, Ti	h2 (°C)		-	-		
(88)m=	19.84	19.84	19.84	19.86	19.86	19.87	19.87	19.87	19.87	19.86	19.85	19.85		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	ee Table	9a)						
(89)m=	0.97	0.95	0.91	0.82	0.67	0.48	0.32	0.37	0.62	0.85	0.95	0.97		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)	-	-		
(90)m=	17.73	18.06	18.57	19.17	19.6	19.82	19.86	19.86	19.73	19.19	18.38	17.69		(90)
			•		•	•	•		f	LA = Livin	g area ÷ (4	4) =	0.4	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	.A) × T2			•		
(92)m=	18.39	18.68	19.12	19.66	20.05	20.26	20.31	20.3	20.17	19.67	18.95	18.35		(92)
Apply	adjustn	nent to t	he mear	interna	l temper	ature fro	m Table	4e, whe	ere appro	priate				
(93)m=	18.24	18.53	18.97	19.51	19.9	20.11	20.16	20.15	20.02	19.52	18.8	18.2		(93)
8. Spa	ace hea	ting requ	uirement											
						ned at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut			or gains		1	1	1	Λ	Con	0-4	Nav	Daa		
l Itilies	Jan	Feb	Mar ains, hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.96	0.93	0.89	0.81	0.68	0.5	0.35	0.4	0.63	0.84	0.93	0.96		(94)
		<u> </u>	, W = (9	<u> </u>	4)m		<u> </u>	<u> </u>						
(95)m=	620.31	692.27	740.42	746.91	667.72	487.43	326.72	340.98	495.39	590.33	591.9	592.12		(95)
Month	nly avera	age exte	rnal tem	perature	from T	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m=	1352.8		1202.86			515.05	332.63	349.94	556.7	845.42	1115.24	1341.77		(97)
-							ì	24 x [(97)	· ·		<u> </u>			
(98)m=	544.98	420.85	344.06	188.44	81.55	0	0	0	0	189.79	376.8	557.75		— (00)
								Tota	l per year	(kWh/year	') = Sum(9	8) _{15,912} =	2704.21	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year								36.43	(99)
9a. En	ergy rec	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
•	e heatir on of sp	_	at from s	econdar	y/supple	ementary	system					ĺ	0	(201)
			at from m			·	•	(202) = 1 -	- (201) =				1	(202)
			ng from	•	. ,			(204) = (204)	02) x [1 –	(203)] =			1	(204)
			ace heat	•									90.5	(206)
	-			•		g systen	າ, %						0	(208)
	٠, ٥. ٠) PP		,	J = , =	,							`′

									_	
Jan Feb Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space heating requirement (calculated 544.98 420.85 344.06 188.44	d above) 81.55	0	0	0	Ι ,	400.70	270.0	T 557.75	1	
		0	0	0	0	189.79	376.8	557.75		(0.4.4)
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (204)$ $602.18 465.03 380.17 208.22$	90.11	0	0	0	0	209.71	416.36	616.29	1	(211)
002.10 400.00 300.17 200.22	30.11	0	U		l (kWh/yea				2988.08	(211)
Space heating fuel (secondary), kWh/	month									」 ` '
$= \{[(98)m \times (201)] \} \times 100 \div (208)$							_	•	-	
(215)m= 0 0 0 0	0	0	0	0	0	0	0	0		7
				Tota	ıl (kWh/yea	ar) =Sum(2	215) _{15,1012}	2=	0	(215)
Water heating Output from water heater (calculated al	oove)									
160.73 140.96 146.38 128.92		109.02	102.45	115.54	116.32	133.81	144.37	156.09]	
Efficiency of water heater						Į.	Į.		87.3	(216)
(217)m= 89.75 89.68 89.52 89.17	88.54	87.3	87.3	87.3	87.3	89.15	89.59	89.78		(217)
Fuel for water heating, kWh/month										
(219) m = (64) m x $100 \div (217)$ m (219)m = 179.08 157.18 163.51 144.58	140.82	124.88	117.35	132.34	133.24	150.1	161.15	173.86	1	
	I			Tota	I = Sum(2	19a) ₁₁₂ =			1778.09	(219)
Annual totals						k'	Wh/yeaı	r	kWh/year	- -
Space heating fuel used, main system	1								2988.08	_
Water heating fuel used									1778.09	
Electricity for pumps, fans and electric keep-hot										_
Electricity for pumps, fans and electric	keep-hot									_
Electricity for pumps, fans and electric central heating pump:	keep-hot							30]	(230c)
	keep-hot							30]	(230c) (230e)
central heating pump:	·			sum	of (230a).	(230g) =			75	,
central heating pump: boiler with a fan-assisted flue	·			sum	of (230a).	(230g) =			75 325.88	(230e)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting	·			sum	of (230a).	(230g) =				(230e)](231)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs	r	⊦ (231)	+ (232).		, ,	(230g) =			325.88	(230e) (231) (232) (233)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211)	r)(221) +	+ (231)	+ (232).		, ,	(230g) =			325.88	(230e) (231) (232)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs	r)(221) +		,		, ,				325.88 -323.58 4930.77	(230e) (231) (232) (233)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211)	r)(221) +	Fu	el		, ,	Fuel P	rice		325.88 -323.58 4930.77 Fuel Cost	(230e) (231) (232) (233)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy	r)(221) +	Fue kW	el /h/year		, ,	Fuel P (Table	rice 12)	45	325.88 -323.58 4930.77 Fuel Cost £/year	(230e) [(231) [(232) [(233) [(338)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy	r)(221) +	FuckW	el /h/year		, ,	Fuel P (Table	rice 12)	x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99	(230e) (231) (232) (233) (338) (240)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2	r)(221) +	Fue kW (211	el /h/year		, ,	Fuel P (Table	rice 12) 8	x 0.01 = x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99	(230e)](231)](232)](233)](338)](240)](241)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2 Space heating - secondary	r)(221) +	Fu kW (211 (213	el /h/year /) × // × // ×		, ,	Fuel P (Table	rice 12) 8	x 0.01 = x 0.01 = x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99 0	(230e)](231)](232)](233)](338)](240)](241)](242)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	r)(221) +	Fu kW (211 (213 (215	el //h/year // x //		, ,	Fuel P (Table	rice 12) 8	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99	(230e)](231)](232)](233)](338)](240)](241)](242)](247)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot	r)(221) + stems:	Fu kW (211 (213 (215 (219 (231	el //h/year // × // × // × // × // × // × // × //	(237b)	=	Fuel P (Table 3.4 0 13. 13.	rice 12) 8 19 8	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99 0 61.88 9.89	(230e)](231)](232)](233)](338)](240)](241)](242)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (r)(221) + stems:	FunkW (2111 (213 (215 (231)231)231 (231)231 (231)231	el /h/year // x //	(237b)	=	Fuel P (Table 3.4 3.4 13. 4 fuel pri	rice 12) 8 19 8 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	325.88 -323.58 4930.77 Fuel Cost £/year 103.99 0 61.88 9.89 Table 12a	(230e)](231)](232)](233)](338)](240)](241)](242)](247)](249)
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/yea Electricity for lighting Electricity generated by PVs Total delivered energy for all uses (211 10a. Fuel costs - individual heating sy Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot	r)(221) + stems: 230g) sep	Fu kW (211 (213 (215 (219 (231	el /h/year // x //	(237b)	=	Fuel P (Table 3.4 0 13. 13.	rice 12) 8 19 8 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	325.88 -323.58 4930.77 Fuel Cost £/year 103.99 0 61.88 9.89	(230e)](231)](232)](233)](338)](240)](241)](242)](247)

	one of (233) to (235) x)	13.19 × 0.01 =	-42.68 (252)
Appendix Q items: repeat lines (253) and (254) as	s needed		
Total energy cost (245)(247)	7) + (250)(254) =		296.06 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		1.04 (257)
SAP rating (Section 12)			85.45 (258)
12a. CO2 emissions – Individual heating system	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	645.42 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216	384.07 (264)
Space and water heating	(261) + (262) + (263) + (264)) =	1029.49 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	38.93 (267)
Electricity for lighting	(232) x	0.519	169.13 (268)
Energy saving/generation technologies Item 1		0.519	-167.94 (269)
Total CO2, kg/year		sum of (265)(271) =	1069.61 (272)
CO2 emissions per m ²		(272) ÷ (4) =	14.41 (273)
El rating (section 14)			88 (274)
13a. Primary Energy			(=: 1)
roa. Filmary Energy	_		
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	3645.46 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	2169.26 (264)
Space and water heating	(261) + (262) + (263) + (264)) =	5814.72 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	230.25 (267)
Electricity for lighting	(232) x	0 =	1000.46 (268)
Energy saving/generation technologies Item 1		3.07 =	-993.38 (269)
'Total Primary Energy	:	sum of (265)(271) =	6052.05 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	81.52 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2021

Property Details: 02-21-86514 008 2B3P [End]

Dwelling type: End-terrace House Located in: England

Located in:EnglandRegion:West Pennines

Cross ventilation possible: Yes Number of storeys: 2

Front of dwelling faces: North East

Overshading: Average or unknown

None

Thermal mass parameter: Calculated 170.14

False

Night ventilation: Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 249.64 (P1)

Transmission heat loss coefficient: 58

Summer heat loss coefficient: 307.66 (P2)

Overhangs:

Overhangs:

Orientation:	Ratio:	Z_overhangs:
North East (W_17)	0	1
South West (W_18)	0	1
North East (W_19)	0	1
South West (W_20)	0	1
North East (W_21)	0	1
South West (W_22)	0	1
South West (W_23)	0	1
North West (W_24)	0	1
North West (W_25)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North East (W_17)	1	0.9	1	0.9	(P8)
South West (W_18)	1	0.9	1	0.9	(P8)
North East (W_19)	1	0.9	1	0.9	(P8)
South West (W_20)	1	0.9	1	0.9	(P8)
North East (W_21)	1	0.9	1	0.9	(P8)
South West (W_22)	1	0.9	1	0.9	(P8)
South West (W_23)	1	0.9	1	0.9	(P8)
North West (W_24)	1	0.9	1	0.9	(P8)
North West (W_25)	1	0.9	1	0.9	(P8)

Solar gains:

Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
North East (W_17)	0.9 x	2.63	89.66	0.63	0.7	0.9	84.23
South West (W_18)	0.9 x	2.63	112.1	0.63	0.7	0.9	105.31
North East (W_19)	0.9 x	1.19	89.66	0.63	0.7	0.9	38.11
South West (W_20)	0.9 x	2.13	112.1	0.63	0.7	0.9	85.29
North East (W_21)	0.9 x	2.13	89.66	0.63	0.7	0.9	68.21
South West (W_22)	0.9 x	1.19	112.1	0.63	0.7	0.9	47.65

SAP 2012 Overheating Assessment

Likelihood of high in	nperature)	No	ot significant	Not significant	Not sig	nificant	
Threshold temperature				.01	20.48	20.1	(P7)	
Thermal mass temper	ement		0.81		0.81	0.81		
Mean summer externa	al tempera	ture (We	st Pennines)	14	.7	16.4	16.3	
Summer gain/loss rati	0			3.	5	3.27	2.99	(P6)
Total summer gains				10	76.62	1007.13	919.93	(P5)
Internal gains				40	7.77	390.86	398.66	
				Ju	ine	July	August	t
Internal gains:								
						Total	616.27	(P3/P4)
North West (W_25)	0.9 x	0.56	89.66	0.63	0.7	0.9	17.93	
North West (W_24)	0.9 x	2.63	89.66	0.63	0.7	0.9	84.23	
South West (W_23)	0.9 x	2.13	112.1	0.63	0.7	0.9	85.29	

Assessment of likelihood of high internal temperature:

Not significant