Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:10:41

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 93.48m²

Site Reference: Bell Road, Bottisham

Plot Reference: Plot 11

Address: Plot 11

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER)

16.67 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 8.65 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 47.6 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 42.6 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.37 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 018403):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular)

Efficiency 89.8 % SEDBUK2009

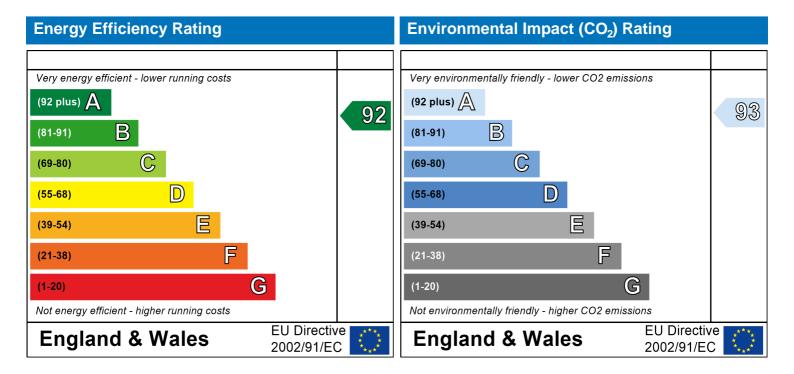
Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.3	•	
	Permitted by DBSCG: 2.30) kWh/day	OK
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing and ele	ctrical services	OK
Hot water controls:	Cylinderstat		OK
	Independent timer for DHW	V	OK
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (East Anglia):		Slight	ок
Based on:		-	
Overshading:		Average or unknown	
Windows facing: East		1.35m²	
Windows facing: West		0.86m²	
Windows facing: West		1.48m²	
Windows facing: West		1.4m²	
Windows facing: East		3.33m²	
Windows facing: East		0.99m²	
Windows facing: South		0.5m²	
Windows facing: South		0.5m²	
Windows facing: East		1.46m²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key feetures			
10 Key features Roofs U-value		0.11 W/m²K	
Party Walls U-value		0.11 W/III-K 0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array		O. I I WYIII IX	
i notovoltale allay			

Predicted Energy Assessment


Plot 11

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 93.48 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: Plot 11

Address: Plot 11
Located in: England
Region: East Anglia

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

03 November 2022
29 November 2022
New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Water use <= 125 litres/person/day: True

PCDF Version: 508

Property description:

Dwelling type: House
Detachment: Semi-detached

Year Completed: 2022

Floor Location: Floor area:

Floor 0 46.74 m² 2.4 m Floor 1 46.74 m² 2.4 m

T.

Living area: 16.24 m² (fraction 0.174)

Front of dwelling faces: West

Sourco

Opening types:

Namai

Name:	Source:	Туре:	Glazing:		Argon:	Frame:
D_12	Manufacturer	Solid				
W_97	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_98	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_99	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_100	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_101	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_102	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_103	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_104	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_105	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
Name:	Gap:	Frame Fac	ctor: g-value:	U-value:	Area:	No. of Openings:
D_12	mm	0	0	1.2	2.03	1
W_97	16mm or more	0.7	0.63	1.4	1.35	1
W_98	16mm or more	0.7	0.63	1.4	0.86	1
W_99	16mm or more	0.7	0.63	1.4	1.48	1
W_100	16mm or more	0.7	0.63	1.4	1.4	1
W_101	16mm or more	0.7	0.63	1.4	3.33	1
W_102	16mm or more	0.7	0.63	1.4	0.99	1
W_103	16mm or more	0.7	0.63	1.4	0.5	1
W_104	16mm or more	0.7	0.63	1.4	0.5	1
W_105	16mm or more	0.7	0.63	1.4	1.46	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D_12	Doors	Wall 1	West		2.03	1
W_97	Windows	Wall 1	East		1.35	1
W_98	Windows	Wall 1	West		0.86	1
W_99	Windows	Wall 1	West		1.48	1
W_100	Windows	Wall 1	West		1.4	1

Clarina

Araon.

Erama

SAP Input

W_101	Windows	Wall 1	East	3.33	1
W_102	Windows	Wall 1	East	0.99	1
W_103	Windows	Wall 1	South	0.5	1
W_104	Windows	Wall 1	South	0.5	1
W 105	Windows	Wall 1	East	1.46	1

Overshading: Average or unknown

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elemen	<u>its</u>						
Wall 1	99.4	13.9	85.5	0.19	0	False	N/A
Roof 1	46.74	0	46.74	0.11	0		N/A
Floor 1	46.74			0.11			N/A
Internal Elemen	ts						
INT FLOOR	<u>46.74</u>						N/A
Party Elements							
Party Wall	43.5						N/A

Thermal bridges

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0744

Length	Psi-value		
10.51	0.3	E2	Other lintels (including other steel lintels)
7.89	0.04	E3	Sill
25.3	0.05	E4	Jamb
19.49	0.16	E5	Ground floor (normal)
19.49	0.07	E6	Intermediate floor within a dwelling
10.96	0.06	E10	Eaves (insulation at ceiling level)
10.43	0.24	E12	Gable (insulation at ceiling level)
10.2	0.09	E16	Corner (normal)
10.2	0.06	E18	Party wall between dwellings
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.53	0	P2	Intermediate floor within a dwelling
0	0.16	P1	Ground floor
0	0.16	P1	
0	0	P2	
5.48	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of passive stacks: 0
Number of sides sheltered: 2

SAP Input

Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular boiler) Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres

Cylinder insulation: Measured loss, 1.32kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: East

Assess Zero Carbon Home: No

		User Details:				
Assessor Name:	Liam Mason	Stroma Nu	mber:	STRO	033679	
Software Name:	Stroma FSAP 2012	Software V	ersion:	Versio	n: 1.0.5.58	
		Property Address: Plot	11			
Address :	Plot 11					
Overall dwelling dime	insions:	Area(m²)	Av. Height(ı	m)	Volume(m³)	\
Ground floor		46.74 (1a) x		(2a) =	112.18	(3a)
First floor		46.74 (1b) x		(2b) =	112.18	 (3b)
Total floor area TFA = (1)	a)+(1b)+(1c)+(1d)+(1e)+(1	n) 93.48 (4)				
Dwelling volume		,,	(3b)+(3c)+(3d)+(3e)	+(3n) =	224.35	(5)
2. Ventilation rate:				L	22 1.00	
2. Ventuation rate.	main seconda heating heating		total		m³ per hou	r
Number of chimneys		+ 0 =	0	x 40 =	0	(6a)
Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)
Number of intermittent fa	ns		2	x 10 =	20	(7a)
Number of passive vents			0	x 10 =	0	(7b)
Number of flueless gas fi	res		0	x 40 =	0	(7c)
				A ir ob	angaa nar ha	_
Infiltration due to altimose	to flues and fano (60) (6b) u	(70) ((7b) ((70) —			anges per ho	_
•	ys, flues and fans = $(6a)+(6b)+(6b)+(6b)$ een carried out or is intended, procein		20 e from (9) to (16)	÷ (5) =	0.09	(8)
Number of storeys in the	•	, ,	, , , ,		0	(9)
Additional infiltration				[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0	.25 for steel or timber frame o	or 0.35 for masonry con	struction		0	(11)
if both types of wall are pa deducting areas of openia	resent, use the value corresponding to	to the greater wall area (after				_
	loor, enter 0.2 (unsealed) or (0.1 (sealed), else enter	0	[0	(12)
If no draught lobby, en	ter 0.05, else enter 0	,			0	(13)
Percentage of windows	s and doors draught stripped			Ī	0	(14)
Window infiltration		0.25 - [0.2 x (14)	÷ 100] =	Ī	0	(15)
Infiltration rate		(8) + (10) + (11) +	+ (12) + (13) + (15) =	=	0	(16)
Air permeability value,	q50, expressed in cubic metr	es per hour per square	metre of envelo	pe area	5	(17)
If based on air permeabil	ity value, then $(18) = [(17) \div 20] +$	(8), otherwise (18) = (16)			0.34	(18)
Air permeability value applie	s if a pressurisation test has been do	one or a degree air permeabil	ity is being used	L		_
Number of sides sheltere	d				2	(19)
Shelter factor		(20) = 1 - [0.075]	x (19)] =		0.85	(20)
Infiltration rate incorporat	ing shelter factor	$(21) = (18) \times (20)$	=		0.29	(21)
Infiltration rate modified f	or monthly wind speed					
Jan Feb	Mar Apr May Jun	Jul Aug Se	p Oct No	ov Dec		
Monthly average wind sp	eed from Table 7					

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
_ [0.37	0.36	0.35	0.32	0.31	0.27	0.27	0.27	0.29	0.31	0.32	0.34		
		<i>ctive air e</i> al ventila	•	rate for t	he appli	cable ca	se						0	(23a)
				endix N, (2	(3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
If bala	nced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				0	(23c)
a) If I	balance	ed mecha	anical ve	entilation	with he	at recov	ery (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	ed mecha	anical ve	entilation	without	heat red	covery (I	MV) (24b	o)m = (22	2b)m + (2	23b)		-	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,				ntilation o	•	•								
r	` ,		<u> </u>	· ` `	ŕ	ŕ	· ` `		ŕ	.5 × (23b			1	(0.4-)
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous $m = (221)$						0.51				
(24d)m=		0.56	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	ld) in bo	x (25)				•	
(25)m=	0.57	0.56	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)
2 40														
э. пеа	at losse:	s and he	eat loss	paramet	er:									
ELEN		s and he Gros area	SS	parameto Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/I	<)	k-value kJ/m²-l		A X k kJ/K
		Gros	SS	Openin	gs		m²				<) 			
ELEN Doors		Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	<) 			kJ/K
ELEM Doors Window	IENT	Gros area	SS	Openin	gs	A ,r	m ² x x1	W/m2	2K = - 0.04] =	(W/I 2.436	<) 			kJ/K (26)
Doors Window Window	IENT ws Type	Gros area e 1	SS	Openin	gs	A ,r 2.03	m² x x1 x1	W/m2 1.2 /[1/(1.4)+	2K = 0.04] = 0.04] =	(W/I 2.436 1.79	<) 			kJ/K (26) (27)
Doors Window Window Window	IENT ws Type ws Type	Gros area e 1 e 2 e 3	SS	Openin	gs	A ,r 2.03 1.35	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14	<)			kJ/K (26) (27) (27)
Doors Window Window Window Window	IENT ws Type ws Type ws Type	Gros area 1 2 2 3 4 4	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14 1.96	<) 			kJ/K (26) (27) (27) (27)
Doors Window Window Window Window Window	NS Type NS Type NS Type NS Type	Gros area 1 2 2 3 3 4 4 5 5	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48	m ²	W/m ² 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14 1.96 1.86	<)			kJ/K (26) (27) (27) (27) (27)
Doors Window Window Window Window Window Window	WS Type WS Type WS Type WS Type WS Type	Gros area 1 2 3 4 4 5 6 6	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41	<)			kJ/K (26) (27) (27) (27) (27) (27)
Doors Window Window Window Window Window Window Window Window	WS Type WS Type WS Type WS Type WS Type	Gros area 4 4 5 5 6 6 7	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Doors Window	WS Type	Gros area 1 1 2 2 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	2.436 1.79 1.14 1.96 1.86 4.41 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
Doors Window	WS Type	Gros area 1 1 2 2 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window	WS Type	Gros area 1 1 2 2 3 4 4 5 5 6 6 7 8 8	ss (m²)	Openin	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Floor	WS Type	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9	ss (m²)	Openin	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roof	WS Type	Gros area 4 1 4 2 4 3 4 4 5 5 6 6 7 7 8 8 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roof	WS Type	Gros area 1 1 2 2 3 3 4 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roor Walls Roof Total a	WS Type	Gros area 1 1 2 2 3 3 4 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 46.74 85.5 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19 0.11	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25 5.14				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

(26)...(30) + (32) =

Fabric heat loss, $W/K = S (A \times U)$

44.7

(33)

Heat capacity Cr	$m = S(A \times k)$)					((28)	.(30) + (32	2) + (32a).	(32e) =	20098.38	(34)
Thermal mass p	,		÷ TFA) ir	n kJ/m²K			Indica	tive Value	: Low		100	(35)
For design assessm	nents where the	details of the	,			ecisely the	e indicative	values of	TMP in Ta	able 1f	100	(/
Thermal bridges	s : S (L x Y)	calculated	using Ap	pendix l	K						14.35	(36)
if details of thermal back. Total fabric heat		t known (36)	= 0.05 x (3	11)			(33) +	(36) =			59.05	(37)
Ventilation heat	loss calcula	ted monthl	V				(38)m	= 0.33 × (25)m x (5)			`
Jan	Feb Ma		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 42.02	41.82 41.6		40.57	39.79	39.79	39.65	40.09	40.57	40.91	41.27		(38)
Heat transfer co	efficient, W/	K	•	•	•	•	(39)m	= (37) + (37)	38)m		'	
(39)m= 101.06 1	100.87 100.6	88 99.79	99.62	98.84	98.84	98.7	99.14	99.62	99.96	100.31		
Heat loss param	neter (HLP),	W/m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	99.79	(39)
(40)m= 1.08	1.08 1.08	3 1.07	1.07	1.06	1.06	1.06	1.06	1.07	1.07	1.07		_
Number of days	in month (T	able 1a)					,	Average =	Sum(40) _{1.}	12 /12=	1.07	(40)
Jan	Feb Ma	ır Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28 31	30	31	30	31	31	30	31	30	31		(41)
4. Water heatin	ng energy re	quirement:								kWh/ye	ear:	
Assumed occupa	ancv. N										İ	
if TFA > 13.9, if TFA £ 13.9,	N = 1 + 1.70	6 x [1 - exp	0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		67		(42)
·	N = 1 + 1.70 N = 1 hot water us	sage in litre	` es per da	ay Vd,av	erage =	(25 x N)	+ 36		9)	67		(42)
if TFA £ 13.9, Annual average	N = 1 + 1.70 N = 1 hot water us average hot wa	sage in litre ter usage by	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed	(25 x N)	+ 36		9)			, ,
if TFA £ 13.9, Annual average Reduce the annual a	N = 1 + 1.70 N = 1 hot water us average hot wa	sage in litro ter usage by per day (all v	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed	(25 x N)	+ 36		9)			, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma	sage in litro ter usage by per day (all v	es per da 5% if the d vater use, l	ay Vd,av dwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	7.62		, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma	sage in litre ter usage by per day (all v ar Apr r each month	es per da 5% if the d vater use, l	ay Vd,av dwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	7.62		, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li	N = 1 + 1.70 $N = 1$ hot water us average hot waters per person Feb Malitres per day for 103.48 99.5	sage in litro ter usage by per day (all v ar Apr r each month	es per da 5% if the d vater use, I May Vd,m = fa 91.77	ay Vd,av fwelling is that and co Jun ctor from	erage = designed in the state of the state o	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Su	9) Nov 103.48 m(44) ₁₁₂ =	Dec 107.38	1171.47	, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1	N = 1 + 1.70 $N = 1$ hot water us average hot waters per person Feb Malitres per day for 103.48 99.5	sage in litro ter usage by per day (all v ar Apr r each month 7 95.67 calculated m	es per da 5% if the d vater use, I May Vd,m = fa 91.77	ay Vd,av fwelling is that and co Jun ctor from	erage = designed in the state of the state o	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Su	9) Nov 103.48 m(44) ₁₁₂ =	Dec 107.38	1171.47	(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot wateres per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7	sage in litre ter usage by per day (all v ar Apr r each month 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May Vd, $m = fa$ 91.77 onthly = 4.	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Su 130.1	9) Nov 103.48 m(44)12 = ables 1b, 1	.62 Dec 107.38 c, 1d) 154.22	1171.47	(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person	sage in litre ter usage by per day (all var Aprar each month) 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May Vd,m = fa 91.77 onthly = 4. 120.23	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r 103.75	erage = designed in	(25 x N) to achieve Aug (43) 91.77 97m / 3600 110.32 boxes (46)	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ =	.62 Dec 107.38		(43) (44) (45)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of hot (45)m= 159.25 1 If instantaneous wate (46)m= 23.89	N = 1 + 1.70 N = 1 hot water usaverage hot wateres per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5	sage in litre ter usage by per day (all var Aprar each month) 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May Vd, $m = fa$ 91.77 onthly = 4.	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Su 130.1	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02	.62 Dec 107.38 c, 1d) 154.22		(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma ditres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated m 72 125.3 pint of use (note) 6 18.8	es per da 5% if the ovater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage),	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75	Oct 99.57 Fotal = Su 130.1 Fotal = Su 19.52	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of hot (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s	N = 1 + 1.70 N = 1 hot water use average hot water es per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at per 20.89 21.5 oss: (litres) inclurating and no stored hot water used hot water estimates and no stored hot water estimates and no	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not 18.8) ding any series tank in dy	es per da 5% if the ovater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage), 15.56 /WHRS	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45) (46)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 OSS: (litres) inclurating and no stored hot wooss:	sage in litro ter usage by per day (all v ar Apr r each month 7 95.67 calculated m 72 125.3 pint of use (n) 6 18.8 ding any s o tank in dv ater (this in	es per da 5% if the o vater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e ncludes i	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,i 103.75 storage), 15.56 /WHRS inter 110 instantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45) (46)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s Water storage lo	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 oss: (litres) inclurating and no stored hot wors: rer's declare	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not) 6 18.8 ding any say tank in dwater (this in decorption)	es per da 5% if the o vater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e ncludes i	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,i 103.75 storage), 15.56 /WHRS inter 110 instantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46) (47)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s Water storage lo a) If manufactur	N = 1 + 1.76 N = 1 hot water use average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 oss: (litres) inclurating and no stored hot wooss: rer's declared to mater storal in water storal	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not 18.8) ding any sate tank in dwater (this in dwater (this in decay) ge, kWh/y	es per da 5% if the ovater use, I May $Vd,m = fa$ 91.77 onthly = 4. 120.23 o hot water 18.03 olar or Welling, encludes i or is known ear	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage), 15.56 IWHRS enter 110 nstantar wn (kWh	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/mor 111.64 16.75 ame vess ers) ente	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3 47)	.62 Dec 107.38 c, 1d) 154.22 23.13 210		(43) (44) (45) (46) (47)

Hot water storage loss factor from Table 2 (kWh/litre/day)			0	(51)
If community heating see section 4.3				_
Volume factor from Table 2a			0	(52)
Temperature factor from Table 2b			0	(53)
Energy lost from water storage, kWh/year	(47) x (51) x (52) x (5	53) =	0	(54)
Enter (50) or (54) in (55)			0.71	(55)
Water storage loss calculated for each month	$((56)m = (55) \times (41)r$	n		
(56)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57)m = (56)	m where (H11) is	from Append	lix H
(57)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(57)
Primary circuit loss (annual) from Table 3			0	(58)
Primary circuit loss calculated for each month (59) m = $(58) \div$	365 × (41)m			
(modified by factor from Table H5 if there is solar water hea	` '	thermostat)		
(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26	23.26 22.51	23.26 22.51	23.26	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (4	1)m			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 0	0 0	0	(61)
				l · · ·
Total heat required for water heating calculated for each mon		<u> </u>	`	(62)
(62)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.6		175.46 185.9) ′
Solar DHW input calculated using Appendix G or Appendix H (negative quar		r contribution to w	ater heating)	
(add additional lines if FGHRS and/or WWHRS applies, see	'i '' '		+	1 (00)
(63)m= 0 0 0 0 0 0	0 0	0 0	0	(63)
Output from water heater			_	1
(64)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.65	155.68 155.53	175.46 185.9	2 199.58	
` '	100.00 100.00	173.40 103.9	2 199.36	
		ater heater (annua		2070.05 (64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa	ater heater (annua	l) ₁₁₂	
	Output from wa m + (61)m] + 0.8 x	ater heater (annua	l) ₁₁₂ m + (59)m	
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m=	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a):	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	Output from wa m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot wa	1 (46)m + (57) 79.55 82.34 82.34 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23	ater heater (annual [(46)m + (57) 79.55 82.34 ater is from co	m + (59)m 87.57 mmunity h	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99	(46)m + (57) 79.55 82.34 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 13a), also see Table	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the second f	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the stabolic gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 1	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 5 29.05 38.99 13a), also see Table 53.69 53.69 3 3 3	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02 53.69 3	(65) neating (66) (67) (68) (69)

Total i	Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$														
(73)m=	656.15	651	626.8	589.53	551.39	517.	.57 498.13	507	7.37	529.14	566.63	608.08	639.42		(73)
6. Sol	ar gains): 				•	,								
Solar g	ains are c	alculated ι	ısing sola	r flux from	Table 6a	and as	ssociated equ	ations	to co	nvert to the	e applica	able orientat	ion.		
Orienta		ccess F	actor	Area			Flux		_	g_ 		FF		Gains	
		able 6d		m²		_	Table 6a	_		able 6b		Table 6c		(W)	
East	0.9x	0.77	X	1.3	35	x	19.64	X		0.63	x	0.7	=	8.1	(76)
East	0.9x	0.77	X	3.3	33	x	19.64	X		0.63	x	0.7	=	19.99	(76)
East	0.9x	0.77	X	0.9	99	X	19.64	X		0.63	x	0.7	=	5.94	(76)
East	0.9x	0.77	X	1.4	46	X	19.64	X		0.63	X	0.7	=	8.76	(76)
East	0.9x	0.77	X	1.3	35	X	38.42	X		0.63	x	0.7	=	15.85	(76)
East	0.9x	0.77	X	3.3	33	X	38.42	X		0.63	x	0.7	=	39.1	(76)
East	0.9x	0.77	X	0.9	99	X	38.42	X		0.63	X	0.7	=	11.62	(76)
East	0.9x	0.77	X	1.4	46	X	38.42	X		0.63	x	0.7	=	17.14	(76)
East	0.9x	0.77	X	1.3	35	X	63.27	X		0.63	x	0.7	=	26.11	(76)
East	0.9x	0.77	X	3.3	33	X	63.27	X		0.63	X	0.7	=	64.39	(76)
East	0.9x	0.77	X	0.9	99	x	63.27	X		0.63	x	0.7	=	19.14	(76)
East	0.9x	0.77	X	1.4	46	x	63.27	X		0.63	X	0.7	=	28.23	(76)
East	0.9x	0.77	X	1.3	35	x	92.28	X		0.63	x	0.7	=	38.07	(76)
East	0.9x	0.77	X	3.3	33	x	92.28	X		0.63	x	0.7	=	93.91	(76)
East	0.9x	0.77	X	0.0	99	x	92.28	X		0.63	x	0.7	=	27.92	(76)
East	0.9x	0.77	X	1.4	16	x	92.28	X		0.63	x	0.7	=	41.17	(76)
East	0.9x	0.77	X	1.3	35	X	113.09	X		0.63	x	0.7	=	46.66	(76)
East	0.9x	0.77	X	3.3	33	X	113.09	X		0.63	x	0.7	=	115.09	(76)
East	0.9x	0.77	X	0.9	99	X	113.09	X		0.63	x	0.7	=	34.22	(76)
East	0.9x	0.77	X	1.4	16	X	113.09	X		0.63	x	0.7	=	50.46	(76)
East	0.9x	0.77	X	1.3	35	X	115.77	X		0.63	x	0.7	=	47.76	(76)
East	0.9x	0.77	X	3.3	33	x	115.77	X		0.63	x	0.7	=	117.82	(76)
East	0.9x	0.77	X	0.9	99	x	115.77	X		0.63	x	0.7	=	35.03	(76)
East	0.9x	0.77	X	1.4	16	x	115.77	X		0.63	x	0.7	=	51.66	(76)
East	0.9x	0.77	X	1.3	35	x	110.22	X		0.63	x	0.7	=	45.47	(76)
East	0.9x	0.77	X	3.3	33	x	110.22	X		0.63	x	0.7	=	112.17	(76)
East	0.9x	0.77	X	0.0	99	x	110.22	X		0.63	x	0.7		33.35	(76)
East	0.9x	0.77	х	1.4	16	x	110.22	X		0.63	x	0.7	=	49.18	(76)
East	0.9x	0.77	X	1.3	35	X	94.68	X		0.63	x	0.7	=	39.06	(76)
East	0.9x	0.77	x	3.3	33	x	94.68	X		0.63	x	0.7	=	96.35	(76)
East	0.9x	0.77	X	0.0	99	x	94.68	X		0.63	X	0.7		28.64	(76)
East	0.9x	0.77	X	1.4	16	x	94.68	X		0.63	×	0.7	<u> </u>	42.24	(76)
East	0.9x	0.77	x	1.3	35	x	73.59	X		0.63	×	0.7	<u> </u>	30.36	(76)
East	0.9x	0.77	x	3.3	33	x	73.59	X		0.63	x	0.7	=	74.89	(76)

	_		,				, ,				,		_
East	0.9x	0.77	X	0.99	X	73.59	X	0.63	X	0.7	=	22.26	(76)
East	0.9x	0.77	X	1.46	X	73.59	X	0.63	X	0.7	=	32.84	(76)
East	0.9x	0.77	X	1.35	X	45.59	X	0.63	X	0.7	=	18.81	(76)
East	0.9x	0.77	X	3.33	X	45.59	X	0.63	X	0.7	=	46.4	(76)
East	0.9x	0.77	X	0.99	X	45.59	X	0.63	X	0.7	=	13.79	(76)
East	0.9x	0.77	X	1.46	X	45.59	X	0.63	X	0.7] =	20.34	(76)
East	0.9x	0.77	X	1.35	X	24.49	X	0.63	X	0.7] =	10.1	(76)
East	0.9x	0.77	X	3.33	x	24.49	X	0.63	X	0.7	=	24.92	(76)
East	0.9x	0.77	X	0.99	x	24.49	X	0.63	X	0.7	=	7.41	(76)
East	0.9x	0.77	X	1.46	x	24.49	X	0.63	X	0.7	=	10.93	(76)
East	0.9x	0.77	X	1.35	x	16.15	x	0.63	x	0.7	=	6.66	(76)
East	0.9x	0.77	X	3.33	x	16.15	x	0.63	x	0.7	=	16.44	(76)
East	0.9x	0.77	X	0.99	x	16.15	X	0.63	X	0.7	=	4.89	(76)
East	0.9x	0.77	X	1.46	x	16.15	x	0.63	x	0.7	=	7.21	(76)
South	0.9x	0.77	X	0.5	x	46.75	X	0.63	X	0.7	=	7.14	(78)
South	0.9x	0.77	X	0.5	x	46.75	X	0.63	X	0.7	=	7.14	(78)
South	0.9x	0.77	X	0.5	x	76.57	X	0.63	X	0.7	=	11.7	(78)
South	0.9x	0.77	X	0.5	x	76.57	X	0.63	X	0.7	=	11.7	(78)
South	0.9x	0.77	X	0.5	x	97.53	X	0.63	X	0.7	=	14.9	(78)
South	0.9x	0.77	X	0.5	x	97.53	x	0.63	x	0.7	<u> </u>	14.9	(78)
South	0.9x	0.77	X	0.5	x	110.23	X	0.63	X	0.7	=	16.84	(78)
South	0.9x	0.77	x	0.5	x	110.23	x	0.63	x	0.7	=	16.84	(78)
South	0.9x	0.77	x	0.5	x	114.87	х	0.63	x	0.7	=	17.55	(78)
South	0.9x	0.77	X	0.5	x	114.87	X	0.63	X	0.7	=	17.55	(78)
South	0.9x	0.77	X	0.5	x	110.55	X	0.63	X	0.7	=	16.89	(78)
South	0.9x	0.77	x	0.5	x	110.55	x	0.63	x	0.7	=	16.89	(78)
South	0.9x	0.77	X	0.5	x	108.01	X	0.63	X	0.7	=	16.5	(78)
South	0.9x	0.77	X	0.5	x	108.01	X	0.63	X	0.7	=	16.5	(78)
South	0.9x	0.77	X	0.5	x	104.89	X	0.63	X	0.7	=	16.03	(78)
South	0.9x	0.77	X	0.5	x	104.89	X	0.63	X	0.7	=	16.03	(78)
South	0.9x	0.77	x	0.5	x	101.89	x	0.63	x	0.7] =	15.57	(78)
South	0.9x	0.77	x	0.5	x	101.89	x	0.63	x	0.7	j =	15.57	(78)
South	0.9x	0.77	X	0.5	x	82.59	x	0.63	x	0.7] =	12.62	(78)
South	0.9x	0.77	x	0.5	x	82.59	x	0.63	x	0.7	j =	12.62	(78)
South	0.9x	0.77	x	0.5	x	55.42	x	0.63	x	0.7	j =	8.47	(78)
South	0.9x	0.77	x	0.5	×	55.42	x	0.63	x	0.7] =	8.47	(78)
South	0.9x	0.77	x	0.5	x	40.4	x	0.63	x	0.7] =	6.17	(78)
South	0.9x	0.77	X	0.5	x	40.4	x	0.63	x	0.7] =	6.17	(78)
West	0.9x	0.77	X	0.86	x	19.64	x	0.63	x	0.7	=	5.16	(80)
West	0.9x	0.77	x	1.48	x	19.64	x	0.63	x	0.7] =	8.88	(80)
West	0.9x	0.77	X	1.4	x	19.64	x	0.63	x	0.7] =	8.4	(80)
	L		-		-		- '		•		-		_

West	Г					_	г		1		_			_		7(00)
West	0.9x	0.77		X	0.86	=	× [Г	38.42	X 1	0.63	_ ×	0.7	= =	H	10.1	(80)
	0.9x	0.77		Х	1.48	=	× L	38.42	X	0.63	_ ×	0.7	_ = -	H	17.38	(80)
West	0.9x	0.77		X	1.4	=	× L	38.42	X 1	0.63	×	0.7	=	H	16.44	(80)
West	0.9x	0.77		X	0.86		× L	63.27	X	0.63	×	0.7	=	Ļ	16.63	(80)
West	0.9x	0.77		X	1.48		× [г	63.27	X	0.63	×	0.7	=	Ļ	28.62	(80)
West	0.9x	0.77		X	1.4		× [г	63.27	X	0.63	×	0.7	=	Ļ	27.07	(80)
West	0.9x	0.77		X	0.86		× [92.28	X	0.63	X	0.7	=	Ļ	24.25	(80)
West	0.9x	0.77		X	1.48	_ '	× [92.28	X	0.63	X	0.7	_ =	Ļ	41.74	(80)
West	0.9x	0.77		X	1.4		× [92.28	X	0.63	X	0.7	_ =	Ļ	39.48	(80)
West	0.9x	0.77		X	0.86		× [113.09	X	0.63	X	0.7	=	Ļ	29.72	(80)
West	0.9x	0.77		X	1.48		× [113.09	X	0.63	X	0.7	-	Ļ	51.15	(80)
West	0.9x	0.77		X	1.4	,	× لِ	113.09	X	0.63	X	0.7	=	Ļ	48.39	(80)
West	0.9x	0.77		X	0.86		× [115.77	X	0.63	X	0.7	=	Ļ	30.43	(80)
West	0.9x	0.77		X	1.48)	× L	115.77	X	0.63	X	0.7	=	L	52.36	(80)
West	0.9x	0.77		X	1.4		× لِ	115.77	X	0.63	X	0.7	=	L	49.53	(80)
West	0.9x	0.77		X	0.86		× لِ	110.22	X	0.63	X	0.7	=	L	28.97	(80)
West	0.9x	0.77		X	1.48		× لِ	110.22	X	0.63	X	0.7	=	L	49.85	(80)
West	0.9x	0.77		X	1.4)	× [110.22	X	0.63	X	0.7	=		47.16	(80)
West	0.9x	0.77		X	0.86)	× [94.68	X	0.63	X	0.7			24.88	(80)
West	0.9x	0.77		X	1.48)	× [94.68	X	0.63	X	0.7	=		42.82	(80)
West	0.9x	0.77		X	1.4)	× [94.68	X	0.63	X	0.7	=		40.51	(80)
West	0.9x	0.77		X	0.86)	× [73.59	X	0.63	X	0.7	=		19.34	(80)
West	0.9x	0.77		X	1.48)	× [73.59	X	0.63	X	0.7	=		33.28	(80)
West	0.9x	0.77		X	1.4)	× [73.59	X	0.63	X	0.7	=		31.49	(80)
West	0.9x	0.77		X	0.86)	× [45.59	X	0.63	X	0.7	=		11.98	(80)
West	0.9x	0.77		X	1.48)	× [45.59	x	0.63	X	0.7			20.62	(80)
West	0.9x	0.77		X	1.4		× [45.59	X	0.63	X	0.7			19.51	(80)
West	0.9x	0.77		X	0.86)	× [24.49	X	0.63	X	0.7			6.44	(80)
West	0.9x	0.77		X	1.48)	× [24.49	x	0.63	X	0.7	=		11.08	(80)
West	0.9x	0.77		X	1.4)	ĸ [24.49	x	0.63	X	0.7			10.48	(80)
West	0.9x	0.77		X	0.86	= ,	× [16.15	x	0.63	x	0.7		Γ	4.24	(80)
West	0.9x	0.77		X	1.48	<u> </u>	ĸ [16.15	x	0.63	x	0.7		F	7.31	(80)
West	0.9x	0.77		X	1.4	,	κĪ	16.15	x	0.63	x	0.7		Ī	6.91	(80)
	_					_			•							_
Solar	gains in	watts, ca	alculate	ed	for each mo	onth			(83)m	n = Sum(74)m	(82)m					
(83)m=	79.53	151.03	240		340.24 410	8.0	41	8.38 399.16	346	.57 275.6	176.6	9 98.29	66			(83)
Total (gains – ii	nternal a	nd sol	ar	(84)m = (73)	3)m +	· (8	3)m , watts						_		
(84)m=	735.69	802.03	866.8		929.77 962	2.19	93	5.95 897.29	853	.94 804.74	743.3	2 706.37	705.42			(84)
7. Me	ean inter	nal temp	eratur	e (heating sea	son)										
							g a	rea from Tal	ole 9	Th1 (°C)				Γ	21	(85)
Utilis	ation fac	tor for ga	ains fo	r li	ving area, h	1,m	(se	e Table 9a)						_		
	Jan	Feb	Mai	.	Apr N	1ay	_	lun Jul	Α	ug Sep	Oct	Nov	Dec			
					•	1		•		•		-		_		

(86)m=	0.94	0.89	0.82	0.72	0.58	0.45	0.48	0.67	0.84	0.92	0.94		(86)
Mean in	ternal tem	perature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				•	
(87)m= 1	9.05 19.2	6 19.64	20.12	20.54	20.82	20.94	20.92	20.72	20.19	19.54	19		(87)
Tempera	ature durin	g heating p	periods in	n rest of	dwelling	from Ta	able 9, T	h2 (°C)		-	-	•	
(88)m= 2	0.02 20.0	2 20.02	20.03	20.03	20.04	20.04	20.04	20.03	20.03	20.03	20.02		(88)
Utilisatio	n factor fo	r gains for	rest of d	welling,	h2,m (se	e Table	9a)					•	
	0.93	- 	0.79	0.68	0.51	0.36	0.4	0.61	0.81	0.9	0.94		(89)
Mean in	ternal tem	perature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)	•	•	ı	
	7.42 17.7		18.95	19.51	19.87	19.99	19.98	19.75	19.06	18.14	17.36		(90)
	•	•	•				!	f	LA = Livin	g area ÷ (4) =	0.17	(91)
Mean in	ternal tem	perature (fo	or the wh	ole dwe	llina) = fl	LA × T1	+ (1 – fL	.A) × T2					_
	17.7 18	`	19.16	19.69	20.04	20.16	20.14	19.92	19.26	18.38	17.64		(92)
Apply ac	djustment t	o the mea	n interna	temper	ature fro	m Table	4e, whe	ere appro	priate			_	
(93)m= 1	7.55 17.8	5 18.36	19.01	19.54	19.89	20.01	19.99	19.77	19.11	18.23	17.49		(93)
8. Space	e heating r	equiremen	t										
		internal te	•		ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-cald	culate	
	Jan Fe	r for gains b Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		r gains, hn	<u> </u>	Iviay	Juli	Jui	Aug	Sep	Oct	INOV	Dec	l	
	0.9 0.88	-	0.76	0.65	0.5	0.36	0.39	0.59	0.78	0.87	0.91		(94)
	ains, hmG	 m , W = (9	4)m x (8	4)m								l	
(95)m= 66	62.53 703.	724.02	707.82	627.62	470.23	322.14	335.45	476.57	578.63	615.12	640.81		(95)
Monthly	average e	xternal ten	perature	from Ta	able 8								
(96)m=	4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		nean interr	T .	1	1	-`` / 	x [(93)m	<u> </u>	ī —			1	
` '	39.55 1306		1008.54		522.53	336.69	354.58	562.18	847.35	1112.97	1333.35		(97)
· —	 ř	uirement fo			//h/mont	$\frac{1}{0} = 0.02$	24 x [(97 ₎)m – (95 0	í - `	- 		1	
(98)m= 50	03.71 404.	349.84	216.52	114.16	U				199.93	358.45	515.25	2662.77	(98)
				.,			Tota	i per year	(KWII/yeai	r) = Sum(9	0)15,912 =		╡
Space h	eating req	uirement ir	ı kWh/m²	² /year								28.48	(99)
		nents – Inc	lividual h	eating sy	ystems i	ncluding	micro-C	CHP)					
Space h	•	and from a	ooondor	v/oupplo	montory	ovetem							(201)
	•	neat from s			пепату	•		(201) -				0	╡```
	•	neat from r	•	` ,			(202) = 1		(000)1			1	(202)
		ating from	•				(204) = (2	02) x [1 –	(203)] =			1	(204)
	•	space hea										93.2	(206)
Efficienc	y of secor	dary/supp	ementar	y heating	g system	า, %						0	(208)
	Jan Fe	b Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
		uirement (d	1			1			1	1	1	1	
	03.71 404.		216.52	114.16	0	0	0	0	199.93	358.45	515.25		
		(204)] } x					1		1	1	1	1	(211)
54	434.	15 375.37	232.32	122.49	0	0	0	0	214.52	384.61	552.84		7 ,
							ıota	i (KVVII/YE	ai) =5um(2	211) _{15,1012}	=	2857.05	(211)

(215)m = 0 0	0	0	0	0	0	0	0	0	0	0]	
·					<u> </u>	Tota	l ıl (kWh/yea	ar) =Sum(2	1 215) _{15,101}		0	(215)
Water heating												_
Output from water hea	ater (calc			447.05	1445	155.00	1.55.50	175.46	1,05,00	100.50	1	
204.61 180.25 Efficiency of water hea		169.2	165.59	147.65	141.5	155.68	155.53	175.46	185.92	199.58	80.1	(216
(217)m= 87.43 87.21	86.73	85.77	84.15	80.1	80.1	80.1	80.1	85.46	86.84	87.54	00.1	(217
Fuel for water heating	, kWh/mo	onth									J	
(219)m = (64) m x 100	ĭ		100.70	404.00	170.05	10400	104.40	005.04	T 04 4 00	1 000	1	
(219)m= 234.03 206.68	218	197.26	196.79	184.33	176.65	194.36 Tota	194.18 Il = Sum(2	205.31 19a) =	214.09	228	2449.68	(219)
Annual totals						. 010	• • • • • • • • • • • • • • • • • •		Wh/yea	r	kWh/yea	
Space heating fuel use	ed, main	system	1						iii y oa		2857.05	
Water heating fuel use	ed										2449.68	
Electricity for pumps, f	ans and	electric	keep-ho	t								
central heating pump):									30	1	(230
boiler with a fan-assis										45]]	(230
Total electricity for the		114/1-7					of (230a)	(230g) =			75	
	abuve. i	kvvn/vea	r			sum	UI (230a).	(200g) –			1 /5	1(231
•	above, i	kvvn/yea	r			sum	OI (230a).	(230g) –			75 423.4	(231)
Electricity for lighting		kvvn/yea	r			sum	or (230a).	(2009) =	•		423.4	(232)
Electricity for lighting Electricity generated b	y PVs	·		+ (231)	+ (232)			(200g) =	•		423.4	(232)
Electricity for lighting Electricity generated b Total delivered energy	oy PVs ⁄ for all u	ses (211)(221)	+ (231)	+ (232)			(2009) =			423.4	(232)
Electricity for lighting Electricity generated b	oy PVs ⁄ for all u	ses (211)(221)	, ,							423.4 -1364.85 4440.28	(232)
Electricity for lighting Electricity generated b Total delivered energy	oy PVs ⁄ for all u	ses (211)(221)	Fu				Fuel P	² rice		423.4	(232)
Electricity for lighting Electricity generated b Total delivered energy	oy PVs r for all us	ses (211 eating sy)(221)	Fu kW	el			Fuel P	Price 12)	x 0.01 =	423.4 -1364.85 4440.28	(232)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi	by PVs of or all use vidual he system 1	ses (211 eating sy)(221)	Fu kW	el /h/year			Fuel P (Table	Price 12)	x 0.01 = x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year	(232)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi	oy PVs of for all us vidual he system 1 system 2	ses (211 eating sy)(221)	Fu kW (21:	el /h/year			Fuel P (Table	Price 12)		423.4 -1364.85 4440.28 Fuel Cost £/year 99.43	(232)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main	oy PVs vidual he system 1 system 2 ndary	ses (211 eating sy)(221)	Fu kW (21:	el /h/year 1) x 3) x 5) x			Fuel P (Table	Price 12) 18	x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0	(232)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon	oy PVs vidual he system 1 system 2 ndary ther fuel)	ses (211 eating sy)(221)	Fu kW (21) (21)	el /h/year 1) x 3) x 5) x			Fuel P (Table	Price 12) 18	x 0.01 = x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0	(242) (242) (242)
Electricity for lighting Electricity generated by Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of	oy PVs vidual he system 1 system 2 ndary ther fuel)	ses (211 eating sy)(221) stems:	Fu kW (21: (21: (21: (21:	el /h/year 1) x 3) x 5) x 9)	(237b)	=	Fuel P (Table 3.4 0 13. 13.	Price 12) 48 19 48 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89	(242) (242) (247)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of Pumps, fans and elect	oy PVs vidual he system 1 system 2 ndary ther fuel)	ses (211 eating sy)(221) stems:	Fu kW (21: (21: (21: (21:	el /h/year 1) x 3) x 5) x 9) 1)	(237b)	=	Fuel P (Table 3.4 0 13. 13.	Price 12) 18 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89	(242) (242) (247)
Electricity for lighting Electricity generated b Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of Pumps, fans and elect (if off-peak tariff, list ea	y PVs vidual he system 2 ndary ther fuel) tric keep- ach of (25	ses (211 eating sy)(221) stems: 230g) se	Fu kW (21: (21: (21: (23: eparately	el /h/year 1) x 3) x 5) x 9) 1)	(237b)	=	Fuel P (Table 3.4 13. 3.4 13.	Price 12) 18 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89 Table 12a	(242) (244) (242) (247) (249)
Electricity for lighting Electricity generated by Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of Pumps, fans and elect (if off-peak tariff, list ea	y PVs vidual he system 2 ndary ther fuel) tric keep- ach of (25	ses (211 eating sy)(221) stems: 230g) se	Fu kW (21 (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1)	(237b)	=	Fuel P (Table 3.4 13. 3.4 13.	Price 12) 18 19 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89 Table 12a 55.85	(232 (233 (233 (338 (240 (241 (242 (247 (249 (250 (251
Electricity for lighting Electricity generated by Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of Pumps, fans and elect (if off-peak tariff, list ea Energy for lighting Additional standing ch	by PVs of for all use vidual here system 2 andary ther fuel) tric keep- ach of (25 arges (T	ses (211 eating sy -hot 30a) to (fable 12))(221) stems: 230g) se	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1) y as app 2)	(237b)	=	Fuel P (Table 3.4 13. 13. 7 fuel pri 13.	Price 12) 18 19 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89 Table 12a 55.85 120	(232 (233 (233 (338 (240 (241 (242 (247 (249 (250 (251
Electricity for lighting Electricity generated by Total delivered energy 10a. Fuel costs - indi Space heating - main Space heating - main Space heating - secon Water heating cost (of Pumps, fans and elect (if off-peak tariff, list ea	by PVs of for all use vidual her system 2 andary ther fuel) tric keep- ach of (2) arges (T	ses (211 eating sy -hot 30a) to (fable 12))(221) stems: 230g) se	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1) y as app 2)	(237b) dicable a	=	Fuel P (Table 3.4 13. 13. 7 fuel pri 13.	Price 12) 18 19 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	423.4 -1364.85 4440.28 Fuel Cost £/year 99.43 0 0 85.25 9.89 Table 12a 55.85 120	(242) (242) (247) (249) (250)

Energy cost factor (ECF)	[(255) x (256)] ÷ [(4) + 45.0] =		0.58 (257)
SAP rating (Section 12)	na avatama ingluding miera CUD		91.94 (258)
12a. CO2 emissions – Individual heati	ng systems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	617.12 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	529.13 (264)
Space and water heating	(261) + (262) + (263) + (264)	=	1146.25 (265)
Electricity for pumps, fans and electric	keep-hot (231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	219.74 (268)
Energy saving/generation technologies Item 1		0.519 =	-708.36 (269)
Total CO2, kg/year	S	um of (265)(271) =	696.57 (272)
CO2 emissions per m²	(2	272) ÷ (4) =	7.45 (273)
EI rating (section 14)			93 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3485.6 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2988.61 (264)
Space and water heating	(261) + (262) + (263) + (264)	=	6474.21 (265)
Electricity for pumps, fans and electric	keep-hot (231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1299.84 (268)
Energy saving/generation technologies Item 1		3.07 =	-4190.08 (269)
'Total Primary Energy	S	um of (265)(271) =	3814.21 (272)

 $(272) \div (4) =$

Primary energy kWh/m²/year

(273)

40.8

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 11

Dwelling type: Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 296.14 (P1)

Transmission heat loss coefficient: 59

Summer heat loss coefficient: 355.19 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
East (W_97)	0	1
West (W_98)	0	1
West (W_99)	0	1
West (W_100)	0	1
East (W_101)	0	1
East (W_102)	0	1
South (W_103)	0	1
South (W_104)	0	1
East (W 105)	0	1

Solar shading.

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
East (W_97)	0.85	0.9	1	0.76	(P8)
West (W_98)	0.85	0.9	1	0.76	(P8)
West (W_99)	0.85	0.9	1	0.76	(P8)
West (W_100)	0.85	0.9	1	0.76	(P8)
East (W_101)	0.85	0.9	1	0.76	(P8)
East (W_102)	0.85	0.9	1	0.76	(P8)
South (W_103)	0.85	0.9	1	0.76	(P8)
South (W_104)	0.85	0.9	1	0.76	(P8)
East (W_105)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	g_{-}	FF	Shading	Gains
East (W_97)	0.9 x	1.35	119.47	0.63	0.7	0.76	48.97
West (W_98)	0.9 x	0.86	119.47	0.63	0.7	0.76	31.2
West (W_99)	0.9 x	1.48	119.47	0.63	0.7	0.76	53.69
West (W_100)	0.9 x	1.4	119.47	0.63	0.7	0.76	50.79
East (W_101)	0.9 x	3.33	119.47	0.63	0.7	0.76	120.8
East (W_102)	0.9 x	0.99	119.47	0.63	0.7	0.76	35.91

SAP 2012 Overheating Assessment

South (W_103)	0.9 x	0.5	114.84	0.63	0.7	0.76	17.43	
South (W_104)	0.9 x	0.5	114.84	0.63	0.7	0.76	17.43	
East (W_105)	0.9 x	1.46	119.47	0.63	0.7	0.76	52.96	
, – ,						Total	429.18	(P3/P4)
Internal gains:								
				Ju	ne	July	August	
Internal gains				514	1.57	495.13	504.37	
Total summer gains				968	3.78	924.31	880.36	(P5)
Summer gain/loss ra	atio			2.7	3	2.6	2.48	(P6)
Mean summer exter	nal tempera	iture (Eas	t Anglia)	15.	4	17.6	17.6	
Thermal mass temper	erature incr	ement		1.3		1.3	1.3	
Threshold temperatu			19.	43	21.5	21.38	(P7)	
Likelihood of high	internal ter	nperature	:	No	t significant	Slight	Slight	

Slight

Assessment of likelihood of high internal temperature: