Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:07:48

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 73.72m²Site Reference:Bell Road, BottishamPlot Reference:Plot 32

Address: Plot 32

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 18.78 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 7.96 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 52.3 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 47.8 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.37 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 016841):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoTEC plus 824

Model qualifier: VUW GB 246/5-5

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

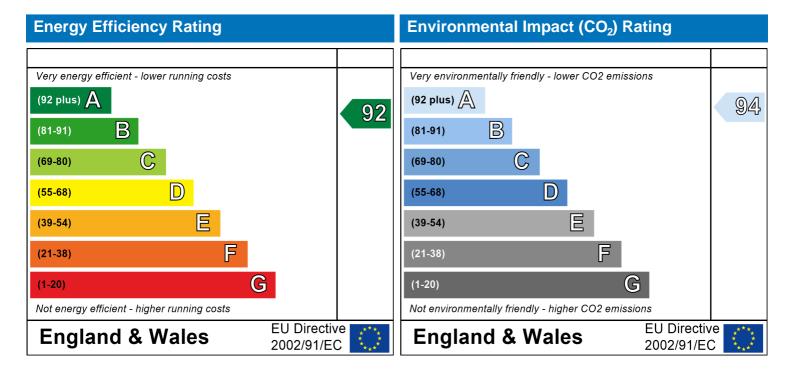
Regulations Compliance Report

Hot water Storage:	No cylinder		
ontrols			
Space heating controls	TTZC by plumbing and e	lectrical services	0
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		0
ow energy lights			
Percentage of fixed lights with I	ow-energy fittings	100.0%	
Minimum		75.0%	0
echanical ventilation			
Not applicable			
ummertime temperature			
Overheating risk (East Anglia):		Slight	0
ed on:		-	
Overshading:		Average or unknown	
Windows facing: North		0.54m²	
Windows facing: East		1.48m²	
Windows facing: West		1.54m²	
Windows facing: North		0.74m²	
Windows facing: North		0.96m²	
Windows facing: North		0.53m²	
Windows facing: East		1.29m²	
Windows facing: East		3.18m²	
Windows facing: West		1.5m² 0.97m²	
Windows facing: North Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or ro	llor blind
Billius/curtairis.		Closed 100% of daylight ho	
		Closed 100 /0 of daylight he	, di 0

Roofs U-value 0.11 W/m²K
Party Walls U-value 0 W/m²K
Floors U-value 0.11 W/m²K

Photovoltaic array

Predicted Energy Assessment


Plot 32

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 73.72 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: Plot 32

Address: Plot 32
Located in: England
Region: East Anglia

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

03 November 2022
29 November 2022
New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Water use <= 125 litres/person/day: True

PCDF Version: 508

Property description:

Dwelling type: House

Detachment: Semi-detached

Year Completed: 2022

Floor Location: Floor area:

Floor 0 36.86 m^2 2.4 m Floor 1 36.86 m^2 2.4 m

Living area: 12.59 m² (fraction 0.171)

Front of dwelling faces: West

-()	penir	na ti	mas.
\sim		iu u	vucs.

D_15

W_127

W_128

Name:	Source:	Type:	Glazing:		Argon:	Frame:
D_15	Manufacturer	Solid				
W_127	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_128	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_129	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_130	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_131	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_132	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_133	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_134	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_135	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
W_136	Manufacturer	Windows	low-E, $En = 0$	0.05, soft coat	Yes	
Name:	Gap:	Frame Fac	ctor: g-value:	U-value:	Area:	No. of Openings:
D_15	mm	0	0	1.2	1.95	1
W_127	16mm or more	0.7	0.63	1.4	0.54	1
W_128	16mm or more	0.7	0.63	1.4	1.48	1
W_129	16mm or more	0.7	0.63	1.4	1.54	1
W_130	16mm or more	0.7	0.63	1.4	0.74	1
W_131	16mm or more	0.7	0.63	1.4	0.96	1
W_132	16mm or more	0.7	0.63	1.4	0.53	1
W_133	16mm or more	0.7	0.63	1.4	1.29	1
W_134	16mm or more	0.7	0.63	1.4	3.18	1
W_135	16mm or more	0.7	0.63	1.4	1.5	1
W_136	16mm or more	0.7	0.63	1.4	0.97	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
	_					_

West

North

East

Storey height:

Wall 1

Wall 1

Wall 1

Doors

Windows

Windows

1.95

0.54

1.48

1

1

1

SAP Input

W_129	Windows	Wall 1	West	1.54	1
W_130	Windows	Wall 1	North	0.74	1
W_131	Windows	Wall 1	North	0.96	1
W_132	Windows	Wall 1	North	0.53	1
W_133	Windows	Wall 1	East	1.29	1
W_134	Windows	Wall 1	East	3.18	1
W_135	Windows	Wall 1	West	1.5	1
W_136	Windows	Wall 1	North	0.97	1

Overshading: Average or unknown

$\overline{}$						
	naa	\square	ы	\sim	α n	te i
\cup	paq	uc.		СП	СП	LO.

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>S</u>						
Wall 1	87.67	14.68	72.99	0.19	0	False	N/A
Roof 1	36.86	0	36.86	0.11	0		N/A
Floor 1	36.86			0.11			N/A
Internal Element	<u>S</u>						
Party Elements							
Party Wall	41.77						N/A

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0908

Length	Psi-value		
11.38	0.3	E2	Other lintels (including other steel lintels)
8.88	0.04	E3	Sill
27.32	0.05	E4	Jamb
17.19	0.16	E5	Ground floor (normal)
17.19	0.07	E6	Intermediate floor within a dwelling
10.2	0.09	E16	Corner (normal)
9	0.06	E10	Eaves (insulation at ceiling level)
10.15	0.24	E12	Gable (insulation at ceiling level)
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.19	0	P2	Intermediate floor within a dwelling
8.19	0.16	P1	Ground floor
0	0.16	P1	
0	0	P2	
4.5	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of passive stacks: 0

SAP Input

Number of sides sheltered: 2 Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 016841) Efficiency: Winter 87.0 % Summer: 90.0

Brand name: Vaillant Model: ecoTEC plus 824

Model qualifier: VUW GB 246/5-5

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Unknown

Boiler interlock: Yes Delayed start

Main heating Control

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901
Fuel :mains gas
No hot water cylinder
Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: East

Assess Zero Carbon Home: No

			11	\						
			User D	etails:						
Assessor Name:	Liam Mason			Strom	a Num	ber:			033679	
Software Name:	Stroma FSAP	2012		Softwa	are Ve	rsion:		Versio	n: 1.0.5.58	
		Pr	operty i	Address	: Plot 32					
Address :	Plot 32									
Overall dwelling dimens	nsions:		_							
Ground floor				a(m²) 6.86	(1a) x	Av. Hei	ght(m) .4	(2a) =	Volume(m³)) (3a)
First floor				6.86	(1b) x		.4		88.46](3b)
Total floor area TFA = (1a	n)+(1b)+(1c)+(1d)-	+(1e)+ (1n		3.72	(4)		.+	(20)	00.40	
	()·(i2)·(i2)·(i4)	. (10) (11)	′ <u> </u>	5.72	j)+(3c)+(3d)T(30)T	(3n) -		٦,5
Dwelling volume					(3a)+(3b)+(30)+(3u)+(3e)+	(311) =	176.93	(5)
2. Ventilation rate:	main	secondary		other		total			m³ per houi	
	heating	heating	, 	outer	_	lolai		·	m per nour	_
Number of chimneys	0	• 0] + [0	=	0	X	40 =	0	(6a)
Number of open flues	0	+ 0] + [0	=	0	х	20 =	0	(6b)
Number of intermittent far	ns					2	X	10 =	20	(7a)
Number of passive vents						0	X	10 =	0	(7b)
Number of flueless gas fir	es					0	X	40 =	0	(7c)
								A ! l.		
Lefter Consult of the Ideas	. ()	(C-) · (Ch) · (7-	-) . (7 5) . (7 -\	_			ı	anges per ho	_
Infiltration due to chimney If a pressurisation test has be	•				continuo fi	20		÷ (5) =	0.11	(8)
Number of storeys in th		тепива, ргосева	10 (17), 0	Juliel Wise	continu e n	om (3) to (10)		0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or tim	ber frame or	0.35 for	r mason	ry consti	uction			0	(11)
if both types of wall are pro deducting areas of openin			the great	er wall are	ea (after					_
If suspended wooden fl			1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ent	er 0.05, else ente	r 0							0	(13)
Percentage of windows	and doors draug	ht stripped							0	(14)
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	00] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	12) + (13) +	- (15) =		0	(16)
Air permeability value,	q50, expressed in	cubic metres	s per ho	our per s	quare m	etre of e	nvelope	area	5	(17)
If based on air permeabili	ty value, then (18)	$= [(17) \div 20] + (8)$), otherwi	se (18) =	(16)				0.36	(18)
Air permeability value applies		st has been done	e or a deg	gree air pe	ermeability	is being us	sed	1		_
Number of sides sheltered Shelter factor	d			(20) = 1 -	[0.075 x (*	19)1 –			2	(19)
Infiltration rate incorporati	na shelter factor			$(20) = 1^{-2}$ (21) = (18)		/1 -			0.85	(20)
•		and		(21) - (10	,,				0.31	(21)
Infiltration rate modified for		1 1	lul	۸۰۰۰	800	Oct	Nov	Doo		
<u> </u>		1ay Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	eed from Table /			1		1		1	ı	

4.9

4.4

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

(22)m=

Wind Factor	· (22a)m =	(22)m ÷	4										
(22a)m= 1.27	7 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjusted infi	iltration rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
0.39	1 1 1 1 1	0.38	0.34	0.33	0.29	0.29	0.29	0.31	0.33	0.35	0.36		
Calculate et	<i>fective air</i> iical ventila	•	rate for t	he appli	cable ca	se						0	(23a)
	r heat pump		endix N, (2	(3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
	with heat reco								, , ,			0	(23c)
a) If balan	nced mech	anical ve	entilation	with he	at recov	ery (MV	HR) (24a	a)m = (2	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If balan	nced mech	anical ve	entilation	without	heat red	covery (ľ	MV) (24b	o)m = (22	2b)m + (23b)		_	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,	house ex			•	•				_				
	o)m < 0.5 >	``	· ` `	ŕ	ŕ –		, ` ` 	í 	<u> </u>			1	(24c)
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0	J	(240)
	al ventilation) $m = 1$, th								0.51				
(24d)m= 0.58		0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57]	(24d)
Effective a	air change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	ld) in bo	x (25)	!		!	•	
(25)m= 0.58	0.57	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57		(25)
3. Heat los	ooo ond be												
J. Heat los	ses and ne	eat loss _l	paramete	er:									
ELEMEN 7		SS	paramet Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/l	K)	k-value kJ/m²-l		A X k kJ/K
	F Gros	SS	Openin	gs		m²				K)			
ELEMENT	F Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	K)			kJ/K
ELEMENT Doors	F Gros area /pe 1	SS	Openin	gs	A ,r	m² x x1	W/m2	2K = - 0.04] =	(W/l	K)			kJ/K (26)
ELEMENT Doors Windows Ty	Gros area /pe 1 /pe 2	SS	Openin	gs	A ,r 1.95	m² x x1 x1	W/m2 1.2 /[1/(1.4)+	2K = - 0.04] = - 0.04] =	2.34 0.72	K)			kJ/K (26) (27)
Doors Windows Ty Windows Ty	Gros area /pe 1 /pe 2 /pe 3	SS	Openin	gs	A ,r 1.95 0.54	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	$ \begin{array}{ccc} 2K & & & \\ & & & \\ -0.04] & = & \\ -0.04] & = & \\ -0.04] & = & \\ \end{array} $	2.34 0.72 1.96	K)			kJ/K (26) (27) (27)
Doors Windows Ty Windows Ty Windows Ty	Gros area /pe 1 /pe 2 /pe 3 /pe 4	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	$\begin{array}{ccc} 2K & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.34 0.72 1.96 2.04	K)			kJ/K (26) (27) (27) (27)
Doors Windows Ty Windows Ty Windows Ty Windows Ty	Gros area /pe 1 /pe 2 /pe 3 /pe 4 /pe 5	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54	m ²	W/m ² 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = - 0.04] =	(W/l 2.34 0.72 1.96 2.04 0.98	K)			kJ/K (26) (27) (27) (27) (27)
Doors Windows Ty Windows Ty Windows Ty Windows Ty Windows Ty Windows Ty	Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54 0.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] =	(W/l 2.34 0.72 1.96 2.04 0.98	K)			kJ/K (26) (27) (27) (27) (27) (27)
Doors Windows Ty	r Gros area /pe 1 /pe 2 /pe 3 /pe 4 /pe 5 /pe 6 /pe 7	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54 0.74 0.96	m ²	W/m ² 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04 =	2.34 0.72 1.96 2.04 0.98 1.27	K)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Doors Windows Ty	reading Gross area for the following Gross ar	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK =	2.34 0.72 1.96 2.04 0.98 1.27 0.7	K)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
Doors Windows Ty	r Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6 rpe 7 rpe 8	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22	K)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows Ty	r Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6 rpe 7 rpe 8	SS	Openin	gs	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows Ty	r Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6 rpe 7 rpe 8	ss (m²)	Openin	gs ₁ ²	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99 1.29				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows Ty Floor	r Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6 rpe 7 rpe 8 rpe 9	ss (m²)	Openin	gs ₁ ²	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5 0.97 36.86	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99 1.29				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows Ty	F Gros area //Pe 1 //Pe 2 //Pe 3 //Pe 4 //Pe 5 //Pe 6 //Pe 7 //Pe 8 //Pe 9 //Pe 10	ss (m²)	Openin m	gs ₁ ²	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5 0.97 36.86 72.99	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99 1.29 4.0546 13.87				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Ty Roof	F Gros area //Pe 1 //Pe 2 //Pe 3 //Pe 4 //Pe 5 //Pe 6 //Pe 7 //Pe 8 //Pe 9 //Pe 10	ss (m²)	Openin m	gs ₁ ²	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5 0.97 36.86 72.99 36.86	m²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99 1.29 4.0546 13.87				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows Ty Floor Walls Roof Total area o	r Gros area rpe 1 rpe 2 rpe 3 rpe 4 rpe 5 rpe 6 rpe 7 rpe 8 rpe 9 rpe 10 87.6 36.8 f elements	65 (m²) 66 6, m²	Openin m 14.6 0	gs ₁ 2 indow U-va	A ,r 1.95 0.54 1.48 1.54 0.74 0.96 0.53 1.29 3.18 1.5 0.97 36.86 161.3 41.77 alue calcul	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19 0	EK =	(W/l 2.34 0.72 1.96 2.04 0.98 1.27 0.7 1.71 4.22 1.99 1.29 4.0546 13.87 4.05		kJ/m²-l	k	kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

(26)...(30) + (32) =

Fabric heat loss, $W/K = S (A \times U)$

41.19

(33)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.	(34) 00 (35)
For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation. Thermal bridges: S (L x Y) calculated using Appendix K	(==)
if details of thermal bridging are not known (36) = 0.05 v (31)	65 (36)
Total fall de Lacelleau	(27)
	85 (37)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (38)m= 33.71 33.54 33.36 32.56 32.41 31.7 31.57 31.97 32.41 32.71 33.03	(38)
Heat transfer coefficient, W/K (39)m = (37) + (38)m	
(39)m= 89.56 89.38 89.21 88.4 88.25 87.55 87.55 87.42 87.82 88.25 88.56 88.88	
	(39)
(40)m= 1.21 1.21 1.21 1.2 1.2 1.19 1.19 1.19 1	
Average = Sum(40) ₁₁₂ /12= 1 Number of days in month (Table 1a)	2 (40)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
(41)m= 31 28 31 30 31 30 31 30 31 30 31	(41)
4. Water heating energy requirement: kWh/year:	
Assumed occupancy, N	(42) (43)
not more that 125 litres per person per day (all water use, hot and cold)	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Hot water usage in litres per day for each month Vd , m = factor from Table 1c x (43)	
(44)m= 98.57 94.98 91.4 87.82 84.23 80.65 80.65 84.23 87.82 91.4 94.98 98.57	
Total = Sum(44) ₁₁₂ = 107 Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)	5.29 (44)
(45)m= 146.17 127.84 131.92 115.01 110.36 95.23 88.25 101.26 102.47 119.42 130.36 141.56	
Total = Sum(45) ₁₁₂ = 140 If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)	9.88 (45)
(46)m= 21.93 19.18 19.79 17.25 16.55 14.28 13.24 15.19 15.37 17.91 19.55 21.23	(46)
Water storage loss:	
Storage volume (litres) including any solar or WWHRS storage within same vessel 0	(47)
If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss:	
a) If manufacturer's declared loss factor is known (kWh/day):	(48)
Temperature factor from Table 2b	(49)
Energy lost from water storage, kWh/year (48) x (49) = 0 b) If manufacturer's declared cylinder loss factor is not known:	(50)

Hot water stor	•			e 2 (kWl	h/litre/da	ay)					0		(51)
If community h	•		on 4.3									ı	
Volume factor Temperature f	-		2h								0		(52)
·							(47) (54)	(50) (50)		0		(53)
Energy lost fro		_	, KVVN/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter (50) or	` ' '	•					(/EC) /	EE) (44).			0		(55)
Water storage							((56)m = (, , ,	m r 		г	ı	
(56)m= 0	0	0	0	0 (50)	0	0	0	0	0	0	0		(56)
If cylinder contain	s dedicated	d solar sto	rage, (57)i	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	/)m = (56)	m where (H11) is fro	m Append	IX H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	t loss (an	nual) fro	m Table	3							0		(58)
Primary circuit				•		` '	` '						
(modified by	/ factor fr	om Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	lculated	for each	month ((61)m =	(60) ÷ 30	65 × (41))m						
(61)m= 25.82	23.3	25.75	24.88	25.67	24.8	25.61	25.65	24.84	25.72	24.94	25.81		(61)
Total heat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 172	151.14	157.68	139.89	136.03	120.04	113.85	126.91	127.32	145.14	155.3	167.37		(62)
Solar DHW input	calculated	using App	endix G or	· Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	ion to wate	r heating)		
(add additiona											3,		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater heat	ter			<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	l	
(64)m= 172	151.14	157.68	400.00								-		
	101.17	107.00	139.89	136.03	120.04	113.85	126.91	127.32	145.14	155.3	167.37		
	101.14	157.06	139.89	136.03	120.04	113.85			l		l .	1712.68	(64)
Heat gains fro	<u> </u>				<u> </u>	l	Outp	out from wa	ater heate	l r (annual)₁	12		(64)
Heat gains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	Outr + (61)m	out from wa	ater heater	l r (annual)₁ + (57)m	+ (59)m],
(65)m= 55.06	m water	heating,	kWh/mo	onth 0.29	5 ´ [0.85 37.87	× (45)m	Outr + (61)m 40.08	out from wa a] + 0.8 x 40.28	ater heater ([(46)m 46.14	r (annual)₁ + (57)m 49.58	+ (59)m 53.52]	(64) (65)
(65)m= 55.06 include (57)	m water 48.33 m in calc	heating, 50.3 culation o	kWh/mo 44.46 of (65)m	onth 0.25 43.11 only if c	5 ´ [0.85 37.87	× (45)m	Outr + (61)m 40.08	out from wa a] + 0.8 x 40.28	ater heater ([(46)m 46.14	r (annual)₁ + (57)m 49.58	+ (59)m 53.52]],
(65)m= 55.06 include (57) 5. Internal ga	m water 48.33 m in calc	heating, 50.3 culation of	kWh/mo 44.46 of (65)m	onth 0.25 43.11 only if c	5 ´ [0.85 37.87	× (45)m	Outr + (61)m 40.08	out from wa a] + 0.8 x 40.28	ater heater ([(46)m 46.14	r (annual)₁ + (57)m 49.58	+ (59)m 53.52]],
(65)m= 55.06 include (57) 5. Internal game	m water 48.33 m in calc ains (see	heating, 50.3 culation of Table 5	kWh/mo 44.46 of (65)m 5 and 5a	onth 0.29 43.11 only if c	5 ´ [0.85 37.87 ylinder i	× (45)m 35.74 s in the o	Outp + (61)m 40.08 dwelling	out from wa a] + 0.8 x 40.28 or hot w	ater heater ([(46)m 46.14 ater is fr	+ (57)m 49.58 om com	+ (59)m 53.52 munity h]],
(65)m= 55.06 include (57) 5. Internal games Metabolic gair Jan	m water 48.33 m in calc ains (see	heating, 50.3 culation of Table 5 5), Wat Mar	kWh/mo 44.46 of (65)m and 5a ts Apr	onth 0.29 43.11 only if constitutions	5 ´ [0.85 37.87 ylinder i	× (45)m 35.74 s in the o	Outp + (61)m 40.08 dwelling	out from wa a] + 0.8 x 40.28 or hot w	ater heater ([(46)m 46.14 ater is fr	+ (57)m + (57)m 49.58 om com	+ (59)m 53.52 munity h]	(65)
(65)m= 55.06 include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98	m water 48.33 m in calc ains (see ns (Table Feb 139.98	heating, 50.3 culation of Table 5 5), Wat Mar 139.98	kWh/mo 44.46 of (65)m and 5a ts Apr 139.98	onth 0.29 43.11 only if constant only in the c	5 ´ [0.85 37.87 sylinder is Jun 139.98	× (45)m 35.74 s in the o	Outp + (61)m 40.08 dwelling Aug 139.98	out from wa a] + 0.8 x 40.28 or hot w Sep 139.98	ater heater ([(46)m 46.14 ater is fr	+ (57)m 49.58 om com	+ (59)m 53.52 munity h]],
include (57) 5. Internal games Metabolic gain Jan (66)m= 139.98 Lighting gains	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98	onth 0.29 43.11 only if c : May 139.98 L, equati	5 ´ [0.85 37.87 ylinder i Jun 139.98 ion L9 o	× (45)m 35.74 s in the c Jul 139.98 r L9a), a	Outp + (61)m 40.08 dwelling Aug 139.98 lso see	Sep 139.98	ater heater ([(46)m 46.14 ater is fr Oct 139.98	(annual) ₁ + (57)m 49.58 om com Nov 139.98	+ (59)m 53.52 munity h Dec 139.98]	(65)
(65)m= 55.06 include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98	m water 48.33 m in calc ains (see ns (Table Feb 139.98	heating, 50.3 culation of Table 5 5), Wat Mar 139.98	kWh/mo 44.46 of (65)m and 5a ts Apr 139.98	onth 0.29 43.11 only if constant only in the c	5 ´ [0.85 37.87 sylinder is Jun 139.98	× (45)m 35.74 s in the o	Outp + (61)m 40.08 dwelling Aug 139.98	out from wa a] + 0.8 x 40.28 or hot w Sep 139.98	ater heater ([(46)m 46.14 ater is fr	+ (57)m + (57)m 49.58 om com	+ (59)m 53.52 munity h]	(65)
include (57) 5. Internal games Metabolic gain Jan (66)m= 139.98 Lighting gains	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8	May 139.98 L, equati	5 ´ [0.85 37.87 ylinder is Jun 139.98 ion L9 o	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87	Sep 139.98 Table 5	ott 139.98	(annual) ₁ + (57)m 49.58 om com Nov 139.98	+ (59)m 53.52 munity h Dec 139.98]	(65)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8	May 139.98 L, equati	5 ´ [0.85 37.87 ylinder is Jun 139.98 ion L9 o	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87	Sep 139.98 Table 5	ott 139.98	(annual) ₁ + (57)m 49.58 om com Nov 139.98	+ (59)m 53.52 munity h Dec 139.98]	(65)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games	m water 48.33 m in calculate 139.98 (calculate 41.9 iins (calculate 310.38	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 Appendix 25.8	May 139.98 L, equati 19.29 dix L, eq 263.66	Jun 139.98 ion L9 o 16.28 uation L	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59 13 or L1 229.82	Aug 139.98 lso see 22.87 3a), also	Sep 139.98 Table 5 30.69 see Tal 234.66	oter heater (46)m 46.14 ater is fr Oct 139.98 38.97 ble 5 251.76	(annual) ₁ + (57)m 49.58 om com Nov 139.98	+ (59)m 53.52 munity h Dec 139.98]	(65) (66) (67)
include (57) 5. Internal games Metabolic gain Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19	m water 48.33 m in calculate 139.98 (calculate 41.9 iins (calculate 310.38	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 Appendix 25.8	May 139.98 L, equati 19.29 dix L, eq 263.66	Jun 139.98 ion L9 o 16.28 uation L	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59 13 or L1 229.82	Aug 139.98 lso see 22.87 3a), also	Sep 139.98 Table 5 30.69 see Tal 234.66	oter heater (46)m 46.14 ater is fr Oct 139.98 38.97 ble 5 251.76	(annual) ₁ + (57)m 49.58 om com Nov 139.98	+ (59)m 53.52 munity h Dec 139.98]	(65) (66) (67)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19 Cooking gains	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat 41.9 ains (calculat 310.38 s (calculat 51.33	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33	kWh/mo 44.46 of (65)m and 5a ts Apr 139.98 opendix 25.8 Appendix 285.25 opendix 51.33	May 139.98 L, equati 19.29 dix L, eq 263.66 L, equat	Jun 139.98 ion L9 o 16.28 uation L 243.37	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a)	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87 3a), also 226.63	Sep 139.98 Table 5 30.69 See Table 234.66	oter heater (46)m 46.14 ater is from Oct 139.98 38.97 ble 5 251.76 5	(annual), + (57)m 49.58 om com Nov 139.98 45.49	+ (59)m 53.52 munity h Dec 139.98 48.49]	(65) (66) (67) (68)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19 Cooking gains (69)m= 51.33	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat 41.9 ains (calculat 310.38 s (calculat 51.33	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33	kWh/mo 44.46 of (65)m and 5a ts Apr 139.98 opendix 25.8 Appendix 285.25 opendix 51.33	May 139.98 L, equati 19.29 dix L, eq 263.66 L, equat	Jun 139.98 ion L9 o 16.28 uation L 243.37	x (45)m 35.74 s in the o Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a)	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87 3a), also 226.63	Sep 139.98 Table 5 30.69 See Table 234.66	oter heater (46)m 46.14 ater is from Oct 139.98 38.97 ble 5 251.76 5	(annual), + (57)m 49.58 om com Nov 139.98 45.49	+ (59)m 53.52 munity h Dec 139.98 48.49]	(65) (66) (67) (68)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19 Cooking gains (69)m= 51.33 Pumps and fames	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat 41.9 ains (calculat 310.38 s (calculat 51.33 ns gains 3	heating, 50.3 culation of the Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33 (Table 5	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 Appendix 285.25 opendix 51.33	May 139.98 L, equati 19.29 dix L, eq 263.66 L, equat 51.33	Jun 139.98 ion L9 o 16.28 uation L 243.37 tion L15 51.33	x (45)m 35.74 s in the of Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a) 51.33	Aug 139.98 lso see 22.87 3a), also 226.63), also se 51.33	Sep 139.98 Table 5 30.69 see Tal 234.66 ee Table 51.33	oter heater (46)m 46.14 ater is from Oct 139.98 38.97 ble 5 251.76 5 51.33	(annual) ₁ + (57)m 49.58 om com Nov 139.98 45.49 273.35	+ (59)m 53.52 munity h Dec 139.98 48.49 293.64]	(65) (66) (67) (68) (69)
include (57) 5. Internal game Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances game (68)m= 307.19 Cooking gains (69)m= 51.33 Pumps and fame (70)m= 3	m water 48.33 m in calc ains (see ns (Table Feb 139.98 (calculat 41.9 ains (calculat 310.38 s (calculat 51.33 ns gains 3	heating, 50.3 culation of the Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33 (Table 5	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 Appendix 285.25 opendix 51.33	May 139.98 L, equati 19.29 dix L, eq 263.66 L, equat 51.33	Jun 139.98 ion L9 o 16.28 uation L 243.37 tion L15 51.33	x (45)m 35.74 s in the of Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a) 51.33	Aug 139.98 lso see 22.87 3a), also 226.63), also se 51.33	Sep 139.98 Table 5 30.69 see Tal 234.66 ee Table 51.33	oter heater (46)m 46.14 ater is from Oct 139.98 38.97 ble 5 251.76 5 51.33	(annual) ₁ + (57)m 49.58 om com Nov 139.98 45.49 273.35	+ (59)m 53.52 munity h Dec 139.98 48.49 293.64]	(65) (66) (67) (68) (69)
include (57) 5. Internal games Metabolic gain Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19 Cooking gains (69)m= 51.33 Pumps and fames (70)m= 3 Losses e.g. even (71)m= -93.32	m water 48.33 m in calculations (see the second of the se	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33 (Table 5 3 on (negating)	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 a Append 285.25 opendix 51.33 5a) 3 tive valu	May 139.98 L, equati 19.29 dix L, equati 263.66 L, equati 51.33 3 es) (Tab	Jun 139.98 ion L9 o 16.28 uation L 243.37 tion L15 51.33	x (45)m 35.74 s in the off Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a) 51.33	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87 3a), also 226.63 , also se 51.33	Sep 139.98 Table 5 30.69 234.66 ee Table 51.33	oter heater (46)m 46.14 ater is from 139.98 38.97 ble 5 251.76 5 51.33	(annual), + (57)m 49.58 om com Nov 139.98 45.49 273.35	+ (59)m 53.52 munity h Dec 139.98 48.49 293.64 51.33]	(65) (66) (67) (68) (69) (70)
include (57) 5. Internal games Metabolic gair Jan (66)m= 139.98 Lighting gains (67)m= 47.18 Appliances games (68)m= 307.19 Cooking gains (69)m= 51.33 Pumps and fames (70)m= 3 Losses e.g. expenses	m water 48.33 m in calculations (see the second of the se	heating, 50.3 culation of Table 5 5), Wat Mar 139.98 ted in Ap 34.08 ulated in 302.35 ted in Ap 51.33 (Table 5 3 on (negating)	kWh/mo 44.46 of (65)m 5 and 5a ts Apr 139.98 opendix 25.8 a Append 285.25 opendix 51.33 5a) 3 tive valu	May 139.98 L, equati 19.29 dix L, equati 263.66 L, equati 51.33 3 es) (Tab	Jun 139.98 ion L9 o 16.28 uation L 243.37 tion L15 51.33	x (45)m 35.74 s in the off Jul 139.98 r L9a), a 17.59 13 or L1 229.82 or L15a) 51.33	Outp + (61)m 40.08 dwelling Aug 139.98 lso see 22.87 3a), also 226.63 , also se 51.33	Sep 139.98 Table 5 30.69 234.66 ee Table 51.33	oter heater (46)m 46.14 ater is from 139.98 38.97 ble 5 251.76 5 51.33	(annual), + (57)m 49.58 om com Nov 139.98 45.49 273.35	+ (59)m 53.52 munity h Dec 139.98 48.49 293.64 51.33]	(65) (66) (67) (68) (69) (70)

Total i	nternal	gains =					(66)m + (67)m	ı + (68	3)m + (69)m + (70)m +	(71)m + (72)	m		
(73)m=	529.37	525.2 50	05.03	473.79	441.88	4	13.23 396.44	404	.36 422.29	453.7	4 488.69	515.06		(73)
6. Sol	ar gains	:												
_			-	flux from	Table 6a	and	l associated equa	tions	to convert to th	e applic		on.		
Orienta		ccess Fact able 6d	tor	Area m²			Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	X	0.5	4	x	10.63	x	0.63	×	0.7	=	1.75	(74)
North	0.9x	0.77	X	0.7	4	X	10.63	x	0.63	×	0.7	=	2.4	(74)
North	0.9x	0.77	X	0.9	6	X	10.63	x	0.63	X	0.7	=	3.12	(74)
North	0.9x	0.77	X	0.5	3	X	10.63	X	0.63	X	0.7	=	1.72	(74)
North	0.9x	0.77	X	0.9	7	X	10.63	x	0.63	X	0.7	=	3.15	(74)
North	0.9x	0.77	X	0.5	4	X	20.32	X	0.63	×	0.7	=	3.35	(74)
North	0.9x	0.77	X	0.7	4	X	20.32	X	0.63	X	0.7	=	4.6	(74)
North	0.9x	0.77	X	0.9	6	X	20.32	X	0.63	X	0.7	=	5.96	(74)
North	0.9x	0.77	X	0.5	3	X	20.32	X	0.63	X	0.7	=	3.29	(74)
North	0.9x	0.77	X	0.9	7	X	20.32	X	0.63	X	0.7	=	6.02	(74)
North	0.9x	0.77	X	0.5	4	X	34.53	X	0.63	X	0.7	=	5.7	(74)
North	0.9x	0.77	×	0.7	4	X	34.53	X	0.63	×	0.7	=	7.81	(74)
North	0.9x	0.77	X	0.9	6	X	34.53	X	0.63	X	0.7	=	10.13	(74)
North	0.9x	0.77	X	0.5	3	X	34.53	X	0.63	x	0.7	=	5.59	(74)
North	0.9x	0.77	X	0.9	7	X	34.53	x	0.63	X	0.7	=	10.24	(74)
North	0.9x	0.77	X	0.5	4	X	55.46	X	0.63	X	0.7	=	9.15	(74)
North	0.9x	0.77	X	0.7	4	X	55.46	X	0.63	X	0.7	=	12.54	(74)
North	0.9x	0.77	X	0.9	6	X	55.46	x	0.63	X	0.7	=	16.27	(74)
North	0.9x	0.77	X	0.5	3	X	55.46	X	0.63	X	0.7	=	8.98	(74)
North	0.9x	0.77	X	0.9	7	X	55.46	X	0.63	X	0.7	=	16.44	(74)
North	0.9x	0.77	X	0.5	4	X	74.72	X	0.63	X	0.7	=	12.33	(74)
North	0.9x	0.77	X	0.7	4	X	74.72	X	0.63	X	0.7	=	16.9	(74)
North	0.9x	0.77	X	0.9	6	X	74.72	X	0.63	X	0.7	=	21.92	(74)
North	0.9x	0.77	X	0.5	3	X	74.72	X	0.63	X	0.7	=	12.1	(74)
North	0.9x	0.77	X	0.9	7	X	74.72	X	0.63	X	0.7	=	22.15	(74)
North	0.9x	0.77	X	0.5	4	X	79.99	X	0.63	X	0.7	=	13.2	(74)
North	0.9x	0.77	X	0.7	4	X	79.99	X	0.63	X	0.7	=	18.09	(74)
North	0.9x	0.77	X	0.9	6	X	79.99	x	0.63	X	0.7	=	23.47	(74)
North	0.9x	0.77	X	0.5	3	X	79.99	x	0.63	X	0.7	=	12.96	(74)
North	0.9x	0.77	X	0.9	7	X	79.99	X	0.63	X	0.7	=	23.71	(74)
North	0.9x	0.77	X	0.5	4	x	74.68	x	0.63	×	0.7	=	12.32	(74)
North	0.9x	0.77	X	0.7	4	x	74.68	x	0.63	x	0.7	=	16.89	(74)
North	0.9x	0.77	X	0.9	6	x	74.68	x	0.63	x	0.7	=	21.91	(74)
North	0.9x	0.77	X	0.5	3	X	74.68	x	0.63	×	0.7	=	12.1	(74)
								,	· · · · ·					

	_		_										_
North	0.9x	0.77	X	0.97	X	74.68	X	0.63	X	0.7	=	22.14	(74)
North	0.9x	0.77	X	0.54	X	59.25	X	0.63	X	0.7	=	9.78	(74)
North	0.9x	0.77	X	0.74	X	59.25	x	0.63	X	0.7	=	13.4	(74)
North	0.9x	0.77	X	0.96	X	59.25	X	0.63	X	0.7	=	17.38	(74)
North	0.9x	0.77	X	0.53	X	59.25	X	0.63	X	0.7	=	9.6	(74)
North	0.9x	0.77	X	0.97	X	59.25	X	0.63	X	0.7	=	17.56	(74)
North	0.9x	0.77	X	0.54	X	41.52	X	0.63	X	0.7	=	6.85	(74)
North	0.9x	0.77	X	0.74	X	41.52	x	0.63	X	0.7	=	9.39	(74)
North	0.9x	0.77	X	0.96	X	41.52	X	0.63	X	0.7	=	12.18	(74)
North	0.9x	0.77	X	0.53	X	41.52	X	0.63	X	0.7	=	6.72	(74)
North	0.9x	0.77	X	0.97	x	41.52	x	0.63	X	0.7	=	12.31	(74)
North	0.9x	0.77	X	0.54	X	24.19	x	0.63	x	0.7	=	3.99	(74)
North	0.9x	0.77	X	0.74	X	24.19	x	0.63	x	0.7	=	5.47	(74)
North	0.9x	0.77	x	0.96	x	24.19	X	0.63	x	0.7	=	7.1	(74)
North	0.9x	0.77	x	0.53	x	24.19	X	0.63	X	0.7	=	3.92	(74)
North	0.9x	0.77	X	0.97	x	24.19	X	0.63	x	0.7	=	7.17	(74)
North	0.9x	0.77	x	0.54	x	13.12	X	0.63	X	0.7	=	2.16	(74)
North	0.9x	0.77	X	0.74	x	13.12	x	0.63	x	0.7	=	2.97	(74)
North	0.9x	0.77	X	0.96	x	13.12	X	0.63	x	0.7	=	3.85	(74)
North	0.9x	0.77	x	0.53	x	13.12	X	0.63	X	0.7	=	2.12	(74)
North	0.9x	0.77	x	0.97	x	13.12	X	0.63	x	0.7	=	3.89	(74)
North	0.9x	0.77	х	0.54	x	8.86	x	0.63	x	0.7	=	1.46	(74)
North	0.9x	0.77	x	0.74	x	8.86	x	0.63	x	0.7	=	2	(74)
North	0.9x	0.77	X	0.96	x	8.86	x	0.63	x	0.7	=	2.6	(74)
North	0.9x	0.77	x	0.53	x	8.86	x	0.63	x	0.7	=	1.44	(74)
North	0.9x	0.77	X	0.97	x	8.86	X	0.63	X	0.7	=	2.63	(74)
East	0.9x	0.77	x	1.48	x	19.64	X	0.63	x	0.7	=	8.88	(76)
East	0.9x	0.77	X	1.29	x	19.64	X	0.63	X	0.7	=	7.74	(76)
East	0.9x	0.77	X	3.18	x	19.64	X	0.63	X	0.7	=	19.09	(76)
East	0.9x	0.77	x	1.48	x	38.42	X	0.63	x	0.7	=	17.38	(76)
East	0.9x	0.77	х	1.29	x	38.42	x	0.63	x	0.7] =	15.15	(76)
East	0.9x	0.77	х	3.18	x	38.42	x	0.63	x	0.7] =	37.34	(76)
East	0.9x	0.77	x	1.48	x	63.27	x	0.63	x	0.7	j =	28.62	(76)
East	0.9x	0.77	x	1.29	x	63.27	x	0.63	x	0.7] =	24.94	(76)
East	0.9x	0.77	x	3.18	x	63.27	x	0.63	х	0.7] =	61.49	(76)
East	0.9x	0.77	x	1.48	x	92.28	x	0.63	x	0.7] =	41.74	(76)
East	0.9x	0.77	x	1.29	x	92.28	x	0.63	x	0.7] =	36.38	(76)
East	0.9x	0.77	x	3.18	x	92.28	x	0.63	x	0.7	j =	89.68	(76)
East	0.9x	0.77	x	1.48	x	113.09	x	0.63	x	0.7] =	51.15	(76)
East	0.9x	0.77	x	1.29	x	113.09	x	0.63	x	0.7] =	44.59	(76)
East	0.9x	0.77	j x	3.18	x	113.09	x	0.63	x	0.7	j =	109.91	(76)
	<u> </u>		_		•		•		•	•	•		_

East		_		_		_		_				_		_
East 0.9x 0.77 x 1.48 x 115.77 x 0.63 x 0.7 = 112.51)76 East 0.9x 0.77 x 1.48 x 110.22 x 0.63 x 0.7 = 43.45 76 East 0.9x 0.77 x 1.48 x 110.22 x 0.63 x 0.7 = 43.45 76 East 0.9x 0.77 x 1.48 x 110.22 x 0.63 x 0.7 = 43.45 76 East 0.9x 0.77 x 1.48 x 94.68 x 0.63 x 0.7 = 42.22 77 East 0.9x 0.77 x 1.48 x 94.68 x 0.63 x 0.7 = 42.22 77 East 0.9x 0.77 x 1.48 x 94.68 x 0.63 x 0.7 = 42.22 77 East 0.9x 0.77 x 1.48 x 94.68 x 0.63 x 0.7 = 20.01 77 East 0.9x 0.77 x 1.48 x 73.59 x 0.63 x 0.7 = 20.01 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 11.08 76 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 11.08 76 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 11.08 76 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.48 x 1.51 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 0.63 x 0.7 = 20.02 77 East 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 1.54 x 1.55 x 0.63 x 0.7 = 20.01 1.00 West 0.9x 0.77 x 1.54 x 1.54 x 1.54 x 1.55 x 0.63 x 0.7 = 20.01 1.00 West 0.9x 0.77 x 1.54 x 1	East	0.9x	0.77	X	1.48	X	115.77	X	0.63	X	0.7	=	52.36	(76)
East	East	0.9x	0.77	X	1.29	x	115.77	x	0.63	X	0.7	=	45.64	(76)
East	East	0.9x	0.77	X	3.18	x	115.77	x	0.63	x	0.7	=	112.51	(76)
Best	East	0.9x	0.77	X	1.48	x	110.22	X	0.63	x	0.7	=	49.85	(76)
East	East	0.9x	0.77	X	1.29	X	110.22	X	0.63	X	0.7	=	43.45	(76)
East 0.9x 0.77 x 1.29 x 94.68 x 0.63 x 0.7 = 37.33 (76 East 0.9x 0.77 x 1.48 x 73.59 x 0.63 x 0.7 = 20.01 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.01 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.01 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 20.01 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.52 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.52 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.52 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.52 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 45.59 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 24.49 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 24.49 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.48 x 16.16 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.54 x 19.64 x 19.64 x 0.63 x 0.7 = 17.79 (78 East 0.9x 0.77 x 1.55 x 19.64 x 19.64 x 0.63 x 0.7	East	0.9x	0.77	X	3.18	X	110.22	X	0.63	X	0.7	=	107.12	(76)
East	East	0.9x	0.77	X	1.48	x	94.68	X	0.63	x	0.7	=	42.82	(76)
East	East	0.9x	0.77	X	1.29	x	94.68	X	0.63	x	0.7	=	37.33	(76)
East	East	0.9x	0.77	X	3.18	x	94.68	x	0.63	x	0.7	=	92.01	(76)
East	East	0.9x	0.77	X	1.48	X	73.59	X	0.63	X	0.7	=	33.28	(76)
East	East	0.9x	0.77	X	1.29	X	73.59	X	0.63	x	0.7	=	29.01	(76)
East	East	0.9x	0.77	X	3.18	X	73.59	X	0.63	x	0.7	=	71.52	(76)
East	East	0.9x	0.77	X	1.48	x	45.59	X	0.63	X	0.7	=	20.62	(76)
East	East	0.9x	0.77	X	1.29	X	45.59	X	0.63	x	0.7	=	17.97	(76)
East	East	0.9x	0.77	X	3.18	x	45.59	X	0.63	x	0.7	=	44.31	(76)
East 0.9x 0.77 x 3.18 x 24.49 x 0.63 x 0.7 = 23.8 (76) East 0.9x 0.77 x 1.48 x 16.15 x 0.63 x 0.7 = 7.31 (76) East 0.9x 0.77 x 1.29 x 16.15 x 0.63 x 0.7 = 6.37 (76) East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 151.7 (76) West 0.9x 0.77 x 1.54 x 38.42 x 0.63 x 0.7 = 9.24 (88) West 0.9x 0.77 x 1.55 x 38.42 x 0.63 x 0.7 = 9.63 (88) West 0.9x 0.77 x 1.55 x 38.42 x 0.63 x 0.7 = 143.43 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.55 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.55 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.55 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80)	East	0.9x	0.77	X	1.48	x	24.49	X	0.63	X	0.7	=	11.08	(76)
East 0.9x 0.77 x 1.48 x 16.15 x 0.63 x 0.7 = 7.31 76 East 0.9x 0.77 x 1.29 x 16.15 x 0.63 x 0.7 = 6.37 76 East 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 151.7 76 West 0.9x 0.77 x 1.55 x 19.64 x 0.63 x 0.7 = 9.24 (80 West 0.9x 0.77 x 1.55 x 19.64 x 0.63 x 0.7 = 9 (80 West 0.9x 0.77 x 1.55 x 19.64 x 0.63 x 0.7 = 18.08 (80 West 0.9x 0.77 x 1.55 x 38.42 x 0.63 x 0.7 = 18.08 (80 West 0.9x 0.77 x 1.55 x 38.42 x 0.63 x 0.7 = 17.61 (80 West 0.9x 0.77 x 1.55 x 63.27 x 0.63 x 0.7 = 29.78 (80 West 0.9x 0.77 x 1.55 x 63.27 x 0.63 x 0.7 = 29.78 (80 West 0.9x 0.77 x 1.55 x 63.27 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.55 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.07 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 444.56 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 =	East	0.9x	0.77	X	1.29	X	24.49	X	0.63	x	0.7	=	9.65	(76)
East	East	0.9x	0.77	X	3.18	x	24.49	X	0.63	x	0.7	=	23.8	(76)
East	East	0.9x	0.77	X	1.48	x	16.15	X	0.63	x	0.7	=	7.31	(76)
West 0.9x 0.77 x 1.54 x 19.64 x 0.63 x 0.7 = 9.24 (80) West 0.9x 0.77 x 1.54 x 38.42 x 0.63 x 0.7 = 18.08 (80) West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 17.61 (80) West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 29.78 (80) West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 29.78 (80) West 0.9x 0.77 x 1.5 x 63.27 x 0.63 x 0.7 = 29.01 (80) West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 43.43 (80) West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 42.3 (80) West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 54.49 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 54.49 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.0 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 1.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 1.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 1.5 x 110.22 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.5 x 1.5 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.5 x 1.5 x 94.68 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.5 x 1.5 x 110.22 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.5 x 1.5 x 1.5 x 110.22 x 0.63 x 0.7 = 34.43 (80) West 0.9x 0.77 x 1.5 x 1	East	0.9x	0.77	X	1.29	X	16.15	X	0.63	X	0.7	=	6.37	(76)
West 0.9x 0.77 x 1.5 x 19.64 x 0.63 x 0.7 = 9 (80) West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 18.08 (80) West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 17.61 (80) West 0.9x 0.77 x 1.5 x 63.27 x 0.63 x 0.7 = 29.78 (80) West 0.9x 0.77 x 1.5 x 63.27 x 0.63 x 0.7 = 29.01 (80) West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 43.43 (80) West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 42.3 (80) West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.5 x 115.2 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 115.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 15.5 x 110.22 x 0.63 x 0.7 = 51.87 (80)	East	0.9x	0.77	X	3.18	x	16.15	X	0.63	x	0.7	=	15.7	(76)
West 0.9x 0.77 x 1.54 x 38.42 x 0.63 x 0.7 = 18.08 (80) West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 17.61 (80) West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 29.78 (80) West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 29.78 (80) West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.54 x 115.77	West	0.9x	0.77	X	1.54	x	19.64	X	0.63	X	0.7	=	9.24	(80)
West 0.9x 0.77 x 1.5 x 38.42 x 0.63 x 0.7 = 17.61 (80 West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 29.78 (80 West 0.9x 0.77 x 1.5 x 63.27 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 115.77 x<	West	0.9x	0.77	X	1.5	X	19.64	X	0.63	X	0.7	=	9	(80)
West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 29.78 (80 West 0.9x 0.77 x 1.54 x 63.27 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 42.3 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.54 x 115.09 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 115.77 <th< td=""><td>West</td><td>0.9x</td><td>0.77</td><td>X</td><td>1.54</td><td>X</td><td>38.42</td><td>X</td><td>0.63</td><td>X</td><td>0.7</td><td>=</td><td>18.08</td><td>(80)</td></th<>	West	0.9x	0.77	X	1.54	X	38.42	X	0.63	X	0.7	=	18.08	(80)
West 0.9x 0.77 x 1.5 x 63.27 x 0.63 x 0.7 = 29.01 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 42.3 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 110.22	West	0.9x	0.77	X	1.5	X	38.42	X	0.63	X	0.7	=	17.61	(80)
West 0.9x 0.77 x 1.54 x 92.28 x 0.63 x 0.7 = 43.43 (80 West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 42.3 (80 West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 54.49 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22	West	0.9x	0.77	X	1.54	X	63.27	X	0.63	X	0.7	=	29.78	(80)
West 0.9x 0.77 x 1.5 x 92.28 x 0.63 x 0.7 = 42.3 (80) West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80) West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 54.49 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 53.07 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 94.68	West	0.9x	0.77	X	1.5	X	63.27	X	0.63	X	0.7	=	29.01	(80)
West 0.9x 0.77 x 1.54 x 113.09 x 0.63 x 0.7 = 53.23 (80 West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 51.84 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 54.49 (80 West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 54.49 (80 West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80 West 0.9x 0.77 x 1.54 x 94.68 <t< td=""><td>West</td><td>0.9x</td><td>0.77</td><td>X</td><td>1.54</td><td>X</td><td>92.28</td><td>X</td><td>0.63</td><td>X</td><td>0.7</td><td>=</td><td>43.43</td><td>(80)</td></t<>	West	0.9x	0.77	X	1.54	X	92.28	X	0.63	X	0.7	=	43.43	(80)
West 0.9x 0.77 x 1.5 x 113.09 x 0.63 x 0.7 = 51.84 (80) West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 54.49 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 53.07 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.54 x 73.59	West	0.9x	0.77	X	1.5	x	92.28	X	0.63	x	0.7	=	42.3	(80)
West 0.9x 0.77 x 1.54 x 115.77 x 0.63 x 0.7 = 54.49 (80) West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 53.07 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 110.22 x 0.63 x 0.7 = 50.53 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 33.73 (80) West <t< td=""><td>West</td><td>0.9x</td><td>0.77</td><td>X</td><td>1.54</td><td>X</td><td>113.09</td><td>X</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>53.23</td><td>(80)</td></t<>	West	0.9x	0.77	X	1.54	X	113.09	X	0.63	x	0.7	=	53.23	(80)
West 0.9x 0.77 x 1.5 x 115.77 x 0.63 x 0.7 = 53.07 (80) West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.54 x 45.59	West	0.9x	0.77	X	1.5	x	113.09	X	0.63	x	0.7	=	51.84	(80)
West 0.9x 0.77 x 1.54 x 110.22 x 0.63 x 0.7 = 51.87 (80) West 0.9x 0.77 x 1.5 x 110.22 x 0.63 x 0.7 = 50.53 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.54	X	115.77	X	0.63	x	0.7	=	54.49	(80)
West 0.9x 0.77 x 1.5 x 110.22 x 0.63 x 0.7 = 50.53 (80) West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.5	X	115.77	X	0.63	x	0.7	=	53.07	(80)
West 0.9x 0.77 x 1.54 x 94.68 x 0.63 x 0.7 = 44.56 (80) West 0.9x 0.77 x 1.5 x 94.68 x 0.63 x 0.7 = 43.4 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.5 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.54	x	110.22	X	0.63	x	0.7	=	51.87	(80)
West 0.9x 0.77 x 1.5 x 94.68 x 0.63 x 0.7 = 43.4 (80) West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.5 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.5	x	110.22	x	0.63	x	0.7	=	50.53	(80)
West 0.9x 0.77 x 1.54 x 73.59 x 0.63 x 0.7 = 34.63 (80) West 0.9x 0.77 x 1.5 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.54	x	94.68	X	0.63	x	0.7	=	44.56	(80)
West 0.9x 0.77 x 1.5 x 73.59 x 0.63 x 0.7 = 33.73 (80) West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.5	x	94.68	X	0.63	x	0.7	=	43.4	(80)
West 0.9x 0.77 x 1.54 x 45.59 x 0.63 x 0.7 = 21.46 (80)	West	0.9x	0.77	X	1.54	x	73.59	X	0.63	x	0.7	=	34.63	(80)
0 0 0 0 0 0 0 0	West	0.9x	0.77	X	1.5	x	73.59	X	0.63	x	0.7	=	33.73	(80)
	West	0.9x	0.77	X	1.54	x	45.59	X	0.63	x	0.7	=	21.46	(80)
West 0.9x 0.77 x 1.5 x 45.59 x 0.63 x 0.7 = 20.9 (80)	West	0.9x	0.77	X	1.5	X	45.59	X	0.63	X	0.7	=	20.9	(80)

West	0.9x	0.77	X	1.5	54	x	24.49	х	0.63	x [0.7		11.53	(80)
West	0.9x	0.77	x	1.5	5	x	24.49	х	0.63	х	0.7	=	11.23	(80)
West	0.9x	0.77	x	1.5	54	x	16.15	х	0.63	х	0.7	=	7.6	(80)
West	0.9x	0.77	x	1.5	5	x	16.15	х	0.63	_ x [0.7		7.4	(80)
	_													
Solar o	ains in	watts. ca	alculated	for eac	h month			(83)m = 5	Sum(74)m .	(82)m				
(83)m=	66.11	128.79	213.31	316.93	396.12	409.	5 388.18	327.84	249.64	152.9	82.28	54.51]	(83)
Total g	jains – i	nternal a	ınd solar	(84)m =	= (73)m -	F (83)	m , watts						1	
(84)m=	595.48	653.98	718.34	790.72	838	822.7	73 784.62	732.2	671.93	606.64	570.96	569.56		(84)
7 Me	an inter	nal temp	erature	(heating	season)	<u> </u>						1	
							ea from Tal	hle 9 Th	1 (°C)				21	(85)
•		_	٠.			•		510 5, 11	11 (0)				21	
UtiliSa		Ť					Table 9a)		Can	0-4	Nov	Daa	1	
(0.0)	Jan	Feb	Mar	Apr	May	Jui	-	Aug	Sep	Oct	Nov	Dec	ļ	(00)
(86)m=	0.94	0.92	0.89	0.82	0.71	0.57	0.45	0.49	0.68	0.85	0.92	0.94	J	(86)
Mean	interna	l temper	ature in l	iving are	ea T1 (fo	llows	steps 3 to 7	7 in Tabl	le 9c)					
(87)m=	18.78	19.01	19.44	19.99	20.46	20.7	9 20.92	20.89	20.64	20.04	19.32	18.73		(87)
Temn	erature	during h	eating n	eriods ir	rest of	dwelli	ing from Ta	hle 9 T	h2 (°C)	•	•	•	•	
(88)m=	19.91	19.91	19.91	19.92	19.92	19.9		19.93	19.93	19.92	19.92	19.92	1	(88)
								<u> </u>	10.00	10.02	10.02	10.02	J	()
		Ť			welling,		(see Table	9a)					1	
(89)m=	0.93	0.91	0.87	0.79	0.66	0.5	0.35	0.39	0.62	0.82	0.91	0.94		(89)
Mean	interna	l temper	ature in t	the rest	of dwelli	ng T2	(follow ste	eps 3 to	7 in Tab	le 9c)				
(90)m=	16.98	17.32	17.92	18.7	19.33	19.7	4 19.88	19.86	19.58	18.78	17.76	16.91		(90)
			,				!	!	•	fLA = Livir	ig area ÷ (4) =	0.17	(91)
Maan	intorno	1 4	atuua /fa	مارین ماه س	میرام مام	l:.a.a.\	£1 A T4	. (4 4	۸) T O					
	17.29	17.61	18.18	18.92	19.53	19.9	= fLA × T1	20.04	_A) × 12 19.76	18.99	18.03	17.22	1	(92)
(92)m=								ļ	ļ	l .	16.03	17.22	J	(32)
					· ·		from Table	1	 	·	17.00	17.07	1	(93)
(93)m=	17.14	17.46	18.03	18.77	19.38	19.7	7 19.91	19.89	19.61	18.84	17.88	17.07		(93)
		ting requ						T		/	7 0)			
			ernai ter or gains i			ed at	step 11 of	rable 9	b, so tha	at 11,m=(76)m an	d re-caid	culate	
uio ai	Jan	Feb	Mar	Apr	May	Jui	n Jul	Aug	Sep	Oct	Nov	Dec	1	
l Itilies			ains, hm	•	iviay	Jui	ii j Jui	I Aug	l Seb	I Oct	INOV	Dec	J	
(94)m=	0.9	0.87	0.83	0.75	0.64	0.49	0.35	0.39	0.59	0.78	0.87	0.91	1	(94)
			W = (94			0.40	0.00	0.00	0.00	0.70	0.07	0.01	J	()
(95)m=	534.97	572.09	596.74	594.7	534.9	402.3	39 274.72	285.05	399.12	473.1	496.79	516.24	1	(95)
			rnal tem					200.00	000.12	1 470.1	130.73	010.24	J	(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6		16.4	14.1	10.6	7.1	4.2	1	(96)
								L		Į	7.1	4.2	J	(30)
			1		1		V = [(39)m]	1	1 ' '	ī .	054.45	4440.00	1	(07)
		1122.25	1028.6	872.22	677.45	452.4		304.76	484.32	727.6	954.45	1143.83	J	(97)
•	Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m													
(98)m=	457.25	369.71	321.3	199.81	106.06	0	0	0	0	189.35	329.52	466.93		7(05)
								Tota	al per year	(kWh/yea	r) = Sum(9	8)15,912 =	2439.92	(98)
Space	e heatin	g require	ement in	kWh/m²	² /year								33.1	(99)

9a. Energy requirements – Individ	dual heating sy	/stems ir	ncluding	micro-C	CHP)					
Space heating:			Ŭ		,					_
Fraction of space heat from second		mentary	•						0	(201)
Fraction of space heat from main	n system(s)			(202) = 1 -	` '				1	(202)
Fraction of total heating from ma	ain system 1			(204) = (204)	02) × [1 –	(203)] =			1	(204)
Efficiency of main space heating	g system 1								92.4	(206)
Efficiency of secondary/supplem	nentary heating	g system	, %			_		_	0	(208)
Jan Feb Mar	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heating requirement (calc	- i		0			100.05	000.50	400.00	Ī	
	99.81 106.06	0	0	0	0	189.35	329.52	466.93		,
$(211)m = \{[(98)m \times (204)] \} \times 100$ $494.86 400.12 347.73 2$) ÷ (206) :16.24 114.78	0	0	0	0	204.93	356.62	505.33		(211)
434.80 400.12 347.73 2	.10.24 114.76	0	0		I (kWh/yea				2640.61	(211)
Space heating fuel (secondary),	kWh/month				()	(/15,1012	2	2040.01	
$= \{[(98) \text{m x } (201)] \} \text{ x } 100 \div (208)$	KVVII/IIIOIIIII									
(215)m= 0 0 0	0 0	0	0	0	0	0	0	0		
				Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}		0	(215)
Water heating										
Output from water heater (calcula	ated above) 39.89 136.03	120.04	113.85	126.91	127.32	145.14	155.3	167.37		
Efficiency of water heater	39.09 130.03	120.04	113.03	120.91	127.52	143.14	100.0	107.57	87	(216)
	88.74 88.29	87	87	87	87	88.67	89.02	89.19		(217)
Fuel for water heating, kWh/mont	l th					<u> </u>	ļ			
(219) m = (64) m x $100 \div (217)$ m							T	T	1	
(219)m= 192.91 169.62 177.19 1	57.64 154.07	137.97	130.86	145.88	146.34 I = Sum(2	163.68	174.47	187.66	4000.00	7,0,0
Annual totals				Tota	i – Suiii(2		Wh/yeaı	<u>,</u>	1938.29 kWh/year	(219)
Space heating fuel used, main sy	stem 1					ĸ	vvii/yeai		2640.61	٦
Water heating fuel used									1938.29	╡
Electricity for pumps, fans and ele	ectric keen-hot	ŀ								
	como Reep no							- 00	Ī	(2200
central heating pump:								30		(2300
boiler with a fan-assisted flue								45		(230e
Total electricity for the above, kW	/h/year			sum	of (230a).	(230g) =			75	(231)
Electricity for lighting									333.28	(232)
Electricity generated by PVs									-1364.85	(233)
Total delivered energy for all uses	s (211)(221)	+ (231)	+ (232).	(237b)	=				3622.34	(338)
10a. Fuel costs - individual heati	ing systems:									
		Fue	el			Fuel P	rice		Fuel Cost	
			h/year			(Table			£/year	
Space heating - main system 1		(211) x			3.4	18	x 0.01 =	91.89	(240)
Space heating - main system 2		(213	3) x					x 0.01 =	0	(241)
		•	-						· · · · · · · · · · · · · · · · · · ·	

Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	67.45 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	9.89 (249)
(if off-peak tariff, list each of (230a) to (230g) sep Energy for lighting	parately as applicable and (232)	d apply fuel price according to $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 x 0.01 =	-180.02 (252)
Appendix Q items: repeat lines (253) and (254) a	as needed		
Total energy cost (245)(245	47) + (250)(254) =		153.17 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) x (2	256)] ÷ [(4) + 45.0] =		0.54 (257)
SAP rating (Section 12)			92.44 (258)
12a. CO2 emissions – Individual heating system	ns including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	570.37 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	418.67 (264)
Space and water heating	(261) + (262) + (263) + (26	54) =	989.04 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	172.97 (268)
Energy saving/generation technologies Item 1		0.519 =	-708.36 (269)
Total CO2, kg/year		sum of (265)(271) =	492.59 (272)
CO2 emissions per m ²		(272) ÷ (4) =	6.68 (273)
EI rating (section 14)			94 (274)
13a. Primary Energy			, , ,
	F	Daire	D 5
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3221.55 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2364.72 (264)
Space and water heating	(261) + (262) + (263) + (26	64) =	5586.27 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1023.18 (268)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 32

Dwelling type: Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 233.54 (P1)

Transmission heat loss coefficient: 55.8

Summer heat loss coefficient: 289.39 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
North (W_127)	0	1
East (W_128)	0	1
West (W_129)	0	1
North (W_130)	0	1
North (W_131)	0	1
North (W_132)	0	1
East (W_133)	0	1
East (W_134)	0	1
West (W_135)	0	1
North (W_136)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North (W_127)	0.85	0.9	1	0.76	(P8)
East (W_128)	0.85	0.9	1	0.76	(P8)
West (W_129)	0.85	0.9	1	0.76	(P8)
North (W_130)	0.85	0.9	1	0.76	(P8)
North (W_131)	0.85	0.9	1	0.76	(P8)
North (W_132)	0.85	0.9	1	0.76	(P8)
East (W_133)	0.85	0.9	1	0.76	(P8)
East (W_134)	0.85	0.9	1	0.76	(P8)
West (W_135)	0.85	0.9	1	0.76	(P8)
North (W_136)	0.85	0.9	1	0.76	(P8)

Solar gains

Orientation		Area	Flux	g _	FF	Shading	Gains
North (W_127)	0.9 x	0.54	82.12	0.63	0.7	0.76	13.46
East (W_128)	0.9 x	1.48	119.47	0.63	0.7	0.76	53.69
West (W_129)	0.9 x	1.54	119.47	0.63	0.7	0.76	55.86
North (W 130)	0.9 x	0.74	82.12	0.63	0.7	0.76	18.45

SAP 2012 Overheating Assessment

						Total	419.37 (P3/P4)
North (W_136)	0.9 x	0.97	82.12	0.63	0.7	0.76	24.19
West (W_135)	0.9 x	1.5	119.47	0.63	0.7	0.76	54.41
East (W_134)	0.9 x	3.18	119.47	0.63	0.7	0.76	115.35
East (W_133)	0.9 x	1.29	119.47	0.63	0.7	0.76	46.79
North (W_132)	0.9 x	0.53	82.12	0.63	0.7	0.76	13.22
North (W_131)	0.9 x	0.96	82.12	0.63	0.7	0.76	23.94

	June	July	August
Internal gains	410.23	393.44	401.36
Total summer gains	856.85	812.81	758.95 (P5)
Summer gain/loss ratio	2.96	2.81	2.62 (P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6
Thermal mass temperature increment	1.3	1.3	1.3
Threshold temperature	19.66	21.71	21.52 (P7)
Likelihood of high internal temperature	Not significant	Slight	Slight

Assessment of likelihood of high internal temperature: Slight