Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:07:05

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 77.27m²Site Reference:Bell Road, BottishamPlot Reference:Plot 37

Address: Plot 37

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 18.82 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 8.93 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 54.4 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 49.3 kWh/m²

ОК

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.38 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 016841):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoTEC plus 824

Model qualifier: VUW GB 246/5-5

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

Hot water Storage: No cylinder Controls		
Space heating controls TTZC by plumb	ing and electrical services	ОК
Hot water controls: No cylinder ther	-	
No cylinder		
Boiler interlock: Yes		ок
Low energy lights		
Percentage of fixed lights with low-energy fittings	100.0%	
Minimum	75.0%	ОК
Mechanical ventilation		
Not applicable		
Summertime temperature		
Overheating risk (East Anglia):	Slight	OK
sed on:	Slight	ON
Overshading:	Average or unknown	
Windows facing: North	0.55m ²	
Windows facing: East	1.46m²	
Windows facing: North	0.94m²	
Windows facing: North	0.73m²	
Windows facing: West	3.18m²	
Windows facing: East	1.46m²	
Windows facing: North	0.94m²	
Windows facing: West	1.32m²	
Windows facing: West	1.46m²	
Windows facing: North	0.82m²	
Windows facing: East	0.64m²	
Windows facing: West	0.7m²	
Windows facing: North	2.22m²	
Ventilation rate:	4.00	
Blinds/curtains:	Dark-coloured curtain or roller	blind
	Closed 100% of daylight hours	}

0.11 W/m²K

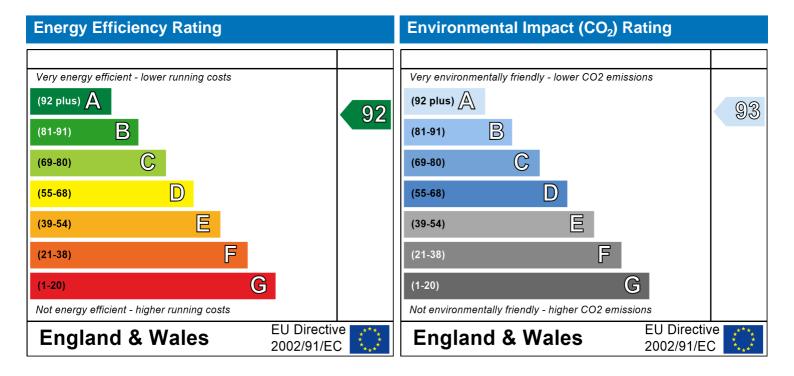
0 W/m²K 0.11 W/m²K

Roofs U-value

Floors U-value Photovoltaic array

Party Walls U-value

Predicted Energy Assessment


Plot 37

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 77.27 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Property Details: Plot 37

Address: Plot 37
Located in: England
Region: East Anglia

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

03 November 2022
29 November 2022
New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Water use <= 125 litres/person/day: True

PCDF Version: 508

Property description:

Dwelling type: House

Detachment: Semi-detached

Year Completed: 2022

Floor Location: Floor area:

Floor 0 39.64 m^2 2.4 m Floor 1 37.63 m^2 2.4 m

Living area: 12.51 m² (fraction 0.162)

Front of dwelling faces: North

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
D_10	Manufacturer	Solid	_	_	
W_72	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_73	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_74	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_75	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_76	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_77	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_78	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_79	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_80	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_81	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_82	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_83	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_84	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	

Storey height:

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
D_10	mm	0	0	1.2	1.97	1
W_72	16mm or more	0.7	0.63	1.4	0.55	1
W_73	16mm or more	0.7	0.63	1.4	1.46	1
W_74	16mm or more	0.7	0.63	1.4	0.94	1
W_75	16mm or more	0.7	0.63	1.4	0.73	1
W_76	16mm or more	0.7	0.63	1.4	3.18	1
W_77	16mm or more	0.7	0.63	1.4	1.46	1
W_78	16mm or more	0.7	0.63	1.4	0.94	1
W_79	16mm or more	0.7	0.63	1.4	1.32	1
W_80	16mm or more	0.7	0.63	1.4	1.46	1
W_81	16mm or more	0.7	0.63	1.4	0.82	1
W_82	16mm or more	0.7	0.63	1.4	0.64	1

W_83	16mm or more	0.7	0.63	1.4	0.7	1
W_84	16mm or more	0.7	0.63	1.4	2.22	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D_10	Doors	Wall 1	North		1.97	1
W_72	Windows	Wall 1	North		0.55	1
W_73	Windows	Wall 1	East		1.46	1
W_74	Windows	Wall 1	North		0.94	1
W_75	Windows	Wall 1	North		0.73	1
W_76	Windows	Wall 1	West		3.18	1
W_77	Windows	Wall 1	East		1.46	1
W_78	Windows	Wall 1	North		0.94	1
W_79	Windows	Wall 1	West		1.32	1
W_80	Windows	Wall 1	West		1.46	1
W_81	Windows	Wall 1	North		0.82	1
W_82	Windows	Wall 1	East		0.64	1
W_83	Windows	Wall 1	West		0.7	1
W_84	Windows	Wall 1	North		2.22	1

Overshading: Average or unknown

Opaque Element	s:						
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemen	<u>ts</u>						
Wall 1	93.49	18.39	75.1	0.19	0	False	N/A
Roof 1	37.63	0	37.63	0.11	0		N/A
Roof 2	2.01	0	2.01	0.11	0		N/A
Floor 1	39.64			0.11			N/A
Internal Elemen	<u>ts</u>						
Party Elements							
Party Wall	41.72						N/A

Thermal bridges:	User-defined (individual PSI-values) Y-Value	e = 0.0881

Length	Psi-value)	
12.23	0.3	E2	Other lintels (including other steel lintels)
10.41	0.04	E3	Sill
28.04	0.05	E4	Jamb
19.4	0.16	E5	Ground floor (normal)
17.38	0.07	E6	Intermediate floor within a dwelling
8.18	0.06	E10	Eaves (insulation at ceiling level)
9.2	0.24	E12	Gable (insulation at ceiling level)
15	0.09	E16	Corner (normal)
4.8	-0.09	E17	Corner (inverted – internal area greater than external area
6	0.08	E14	Flat roof
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.18	0.16	P1	Ground floor
8.18	0	P2	Intermediate floor within a dwelling

0	0.16	P1	
0	0	P2	
0	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 016841) Efficiency: Winter 87.0 % Summer: 90.0

Brand name: Vaillant Model: ecoTEC plus 824

Model qualifier: VUW GB 246/5-5

(Combi boiler) Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901
Fuel :mains gas
No hot water cylinder
Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 1.5 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: South

Assess Z	ero Carbon	Home:	No

		User D	etails:				
Assessor Name:	Liam Mason		Stroma N	umber:	STRO	033679	
Software Name:	Stroma FSAP 2012		Software '		Versio	n: 1.0.5.58	
		Property .	Address: Plo	t 37			
Address :	Plot 37						
1. Overall dwelling dime	nsions:	Aro	n/m²\	Av Heie	ub 4 / ma \	Valuma/m³	`
Ground floor			a(m²) 9.64 (1a)	x Av. Heig		Volume(m³ 95.14) (3a)
First floor		3	7.63 (1b)	x 2.4	(2b) =	90.31	(3b)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+	 7	7.27 (4)				
Dwelling volume		` '		+(3b)+(3c)+(3d)+	+(3e)+(3n) =	185.45	(5)
2. Ventilation rate:					l		
Z. Vontilation rate.	main seco heating heat		other	total		m³ per hou	r
Number of chimneys		0 +	0 =	0	x 40 =	0	(6a)
Number of open flues	0 +	0 +	0 =	0	x 20 =	0	(6b)
Number of intermittent far	ns			2	x 10 =	20	(7a)
Number of passive vents				0	x 10 =	0	(7b)
Number of flueless gas fin	es			0	x 40 =	0	(7c)
							_
1.60	(0-)./(N. V. (7 - V. (7 1- V. (7 -)			anges per ho	_
Infiltration due to chimney	rs, flues and fans = (6a)+(6 een carried out or is intended, p			20 ue from (9) to (1)	÷ (5) =	0.11	(8)
Number of storeys in th		· //		() (, 	0	(9)
Additional infiltration					[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or timber fram	ne or 0.35 for	r masonry co	nstruction		0	(11)
if both types of wall are pr deducting areas of openin	esent, use the value correspond	ling to the great	er wall area (afte	er	•		
	oor, enter 0.2 (unsealed)	or 0.1 (seale	ed), else ente	r 0	ĺ	0	(12)
If no draught lobby, ent	er 0.05, else enter 0				i	0	(13)
Percentage of windows	and doors draught stripp	ed			İ	0	(14)
Window infiltration			0.25 - [0.2 x (14	·) ÷ 100] =		0	(15)
Infiltration rate			(8) + (10) + (11)	+ (12) + (13) +	(15) =	0	(16)
Air permeability value,	q50, expressed in cubic n	netres per ho	our per squar	e metre of en	velope area	5	(17)
If based on air permeabili		-			'	0.36	(18)
Air permeability value applie	s if a pressurisation test has bee	en done or a deg	gree air permeal	oility is being use	ed .		
Number of sides sheltere	d					2	(19)
Shelter factor			(20) = 1 - [0.075]	5 x (19)] =		0.85	(20)
Infiltration rate incorporat	ng shelter factor		$(21) = (18) \times (20)$	0) =		0.3	(21)
Infiltration rate modified for	or monthly wind speed						_
Jan Feb	Mar Apr May J	lun Jul	Aug S	ep Oct	Nov Dec		
Monthly average wind sp	eed from Table 7						

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

Wind Factor (2	2a)m =	(22)m ÷	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
	_								<u>!</u>				
Adjusted infiltra		· · · · · ·				` 	`	`		201			
0.39 Calculate effec	0.38 ctive air	0.37 chanae i	0.33 rate for t	0.33 he appli	0.29 Cable ca	0.29 SE	0.28	0.3	0.33	0.34	0.36		
If mechanica		-		app	J G G G G G G G G G G G G G G G G G G G							0	(23a)
If exhaust air he	eat pump i	using Appe	endix N, (2	3b) = (23a) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)		ĺ	0	(23b)
If balanced with	heat reco	overy: effic	iency in %	allowing for	or in-use f	actor (from	n Table 4h) =			İ	0	(23c)
a) If balance	d mecha	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (22)	2b)m + (23b) × [1	– (23c)	÷ 100]	
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance	d mecha	anical ve	entilation	without	heat rec	covery (N	ЛV) (24b	m = (22)	2b)m + (2	23b)			
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole he				•	•								
if (22b)m		<u> </u>	<u> </u>			· ` `	ŕ	ŕ	<u> </u>	<u> </u>			(0.4.)
(24c)m = 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural v if (22b)m									0.51				
(24d)m = 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(24d)
Effective air		<u> </u>	<u> </u>			<u> </u>	<u> </u>	ļ					
(25)m= 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(25)
							•		•				
3 Heat Insses	s and he	at loss r	naramete	or∙									
3. Heat losses		•			Net Ar	ea	U-valı	ue	AXU		k-value	<u> </u>	AXk
3. Heat losses	s and he Gros area	SS	oaramete Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²-ł		A X k kJ/K
	Gros	SS	Openin	gs		n²				<)			
ELEMENT	Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	<) 			kJ/K
ELEMENT Doors	Gros area	SS	Openin	gs	A ,r	m ² x x x 1/2	W/m2	2K = - 0.04] =	(W/I 2.364	<) 			kJ/K (26)
ELEMENT Doors Windows Type	Gros area	SS	Openin	gs	A ,r 1.97	m ² x x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1	W/m2 1.2 /[1/(1.4)+	2K = 0.04] = 0.04] =	(W/I 2.364 0.73	<) 			kJ/K (26) (27)
ELEMENT Doors Windows Type Windows Type	Gros area	SS	Openin	gs	A ,r 1.97 0.55	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.364 0.73 1.94	<)			kJ/K (26) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type	Gros area 1 2 3	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04]	(W/I 2.364 0.73 1.94 1.25	<)			kJ/K (26) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.364 0.73 1.94 1.25 0.97	<)			kJ/K (26) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type	Gross area 1 2 3 4 5	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18	x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] =	(W/I 2.364 0.73 1.94 1.25 0.97 4.22	<)			kJ/K (26) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46	x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94	<)			kJ/K (26) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25	O TOTAL T			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8 9	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94	•			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8 9 10	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82 0.64	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94 1.09 0.85	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8 9 10 11	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82 0.64 0.7	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK 0.04 = 0.04 =	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94 1.09 0.85 0.93	<>			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8 9 10 11	SS	Openin	gs	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82 0.64 0.7	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94 1.09 0.85 0.93 2.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Floor	Gros area 1 2 3 4 5 6 7 8 9 10 11 12 13	ss (m²)	Openin	gs ²	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82 0.64 0.7 2.22 39.64	x10 x10 x10 x10 x10 x10 x10 x10 x10 x10	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] =	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94 1.09 0.85 0.93 2.94 4.3604				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 5 6 7 8 9 10 11	ss (m²)	Openin	gs ²	A ,r 1.97 0.55 1.46 0.94 0.73 3.18 1.46 0.94 1.32 1.46 0.82 0.64 0.7	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.364 0.73 1.94 1.25 0.97 4.22 1.94 1.25 1.75 1.94 1.09 0.85 0.93 2.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

Roof T	ype2	2.01	1	0		2.01	X	0.11	= [0.22				(30)
Total a	rea of e	lements	, m²			172.7	7							(31)
Party w	all					41.72	<u>x</u>	0	=	0				(32)
				ffective wi nternal wali			ated using	g formula 1	/[(1/U-valu	re)+0.04] a	ns given in	paragraph	3.2	
Fabric	heat los	s, W/K =	= S (A x	U)				(26)(30)) + (32) =				47.12	(33)
Heat ca	apacity (Cm = S(Axk)						((28)	.(30) + (32	2) + (32a)	(32e) =	16816.56	(34)
Therma	al mass	parame	ter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	: Low		100	(35)
•					constructi	ion are not	t known pi	recisely the	e indicative	values of	TMP in Ta	able 1f		
			tailed calcu x Y) calu	culated ı	ısina An	nendix k	<						15.21	(36)
	_			own (36) =		-	`						15.21	(30)
	bric hea	0 0		()	,	,			(33) +	(36) =			62.34	(37)
Ventila	tion hea	t loss ca	alculated	l monthly	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	35.2	35.02	34.85	34.02	33.87	33.15	33.15	33.02	33.43	33.87	34.18	34.51		(38)
Heat tra	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	97.54	97.36	97.18	96.36	96.21	95.49	95.49	95.36	95.77	96.21	96.52	96.84		
1111-			II D\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	/ 21.C							Sum(39) _{1.}	12 /12=	96.36	(39)
r		· ·	HLP), W/		1.05	4.24	1 24	1 22		= (39)m ÷		1.05		
(40)m=	1.26	1.26	1.26	1.25	1.25	1.24	1.24	1.23	1.24	1.25 Average –	1.25 Sum(40) _{1.}	1.25	1.25	(40)
Numbe	r of day	s in mor	nth (Tabl	le 1a)					,	- verage	Sum(40)1.	12 / 12-	1.23	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
-														
4. Wa	ter heat	ing ener	gy requi	rement:								kWh/ye	ear:	
Δesum	ed occu	pancy, N	NI.									44	1	(42)
if TF	۹ > 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		41		(42)
	4 £ 13.9	•		. 114				(O.S. N.I.)	00				i	
								(25 x N) to achieve		se target o		.41		(43)
not more	that 125	litres per p	person per	day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage ir	n litres per	day for ea	ach month	Vd,m = fa	ctor from 7	Table 1c x	(43)						
(44)m=	100.56	96.9	93.24	89.59	85.93	82.27	82.27	85.93	89.59	93.24	96.9	100.56		
Energy o	ontent of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x L	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1096.97	(44)
(45)m=	149.12	130.42	134.58	117.33	112.58	97.15	90.03	103.31	104.54	121.83	132.99	144.42		
If instant	aneous w	ater heatir	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1438.3	(45)
(46)m=	22.37	19.56	20.19	17.6	16.89	14.57	13.5	15.5	15.68	18.27	19.95	21.66		(46)
	storage		السامما		.lor - : 14	/\//\ \DC	-1						· I	
ŭ		,		•			ŭ	within sa	ame ves	sei		0		(47)
	•	_		nk in dw ar (this in	_			ı (47) əmbi boil	are) anto	ar 'O' in <i>(</i>	17)			

A If manufacturer's declared loss factor is known (kWh/day):	Water storage loss:											
Common C	<u>-</u>	clared loss fact	or is kno	wn (kWł	n/day):					0		(48)
Diffice The properties The propert	Temperature factor from	n Table 2b								0		(49)
Flot water storage loss factor from Table 2 (kWh/litrer/day)	Energy lost from water s	storage, kWh/y	ear			(48) x (49)) =			0		(50)
Volume factor from Table 2a	,	•										
Volume factor from Table 2a	_		le 2 (kW	h/litre/da	ıy)					0		(51)
Energy lost from vater storage, kWh/year	· · · · · · · · · · · · · · · · · · ·									0		(52)
Company Content Cont									-			` '
Comparison Com	•		ear			(47) x (51)	x (52) x (53) =				, ,
Water storage loss calculated for each month	••	•	oui			() ()	(,	-			` '
It cylinder contains dedicated solar storage, (57)m = (56)m x ([50] - (H11]) + (50), else (57)m = (56)m where (H11) is from Appendix H (57)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , ,		month			((56)m = (55) × (41)ı	m				,
It cylinder contains dedicated solar storage, (57)m = (56)m x ([50] - (H11]) + (50), else (57)m = (56)m where (H11) is from Appendix H (57)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(56)m= 0 0	0 0	0	0	0	0	0	0	0	0		(56)
Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (69)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		solar storage, (57)	m = (56)m	x [(50) – (H11)] ÷ (50	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	, ,
Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (69)m=	(57)m= 0 0	0 0	0	0	0	0	0	0	0	0		(57)
Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (69)m=	Primary circuit loss (ann	uual) from Tahle	3 3							0		(58)
(65)me	•	,		59)m = ((58) ÷ 36	55 × (41)	m					` '
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m (61)m= 25.84	•				. ,	, ,		r thermo	stat)			
(61) me 25.84 23.31 25.77 24.89 25.68 24.81 25.61 25.66 24.85 25.73 24.96 25.83 (61) Total heat required for water heating calculated for each month (62) m = 0.85 x (45) m + (46) m + (57) m + (59) m + (61) m (62) m = 174.96 153.74 160.35 142.22 138.27 121.96 115.64 128.96 129.39 147.56 157.95 170.24 (62) Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63) m = 0 0 0 0 0 0 0 0 0 0	(59)m= 0 0	0 0	0	0	0	0	0	0	0	0		(59)
Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 174.96	Combi loss calculated for	or each month	(61)m =	(60) ÷ 36	65 × (41))m			-	-		
(62)m= 174.96	(61)m= 25.84 23.31	25.77 24.89	25.68	24.81	25.61	25.66	24.85	25.73	24.96	25.83		(61)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter 0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total heat required for w	vater heating c	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(62)m= 174.96 153.74	160.35 142.22	138.27	121.96	115.64	128.96	129.39	147.56	157.95	170.24		(62)
(63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solar DHW input calculated us	sing Appendix G o	r Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	ion to wate	er heating)		
Output from water heater (64)m= 174.96	(add additional lines if F	GHRS and/or \	WWHRS	applies	, see Ap	pendix (3)					
174.96 153.74 160.35 142.22 138.27 121.96 115.64 128.96 129.39 147.56 157.95 170.24	(63)m= 0 0	0 0	0	0	0	0	0	0	0	0		(63)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69) S1.86 S1.8	Output from water heate	er										
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m = 56.04 49.19 51.19 45.24 43.86 38.51 36.34 40.76 40.97 46.94 50.46 54.47 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m = 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m = 47.71 42.37 34.46 26.09 19.5 16.46 17.79 23.12 31.04 39.41 46 49.04 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m = 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m = 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	(64)m= 174.96 153.74	160.35 142.22	138.27	121.96	115.64	128.96	129.39	147.56	157.95	170.24		_
(65)m=				-		Outp	out from wa	ater heate	r (annual)₁	12	1741.26	(64)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 144.54 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 47.71 42.37 34.46 26.09 19.5 16.46 17.79 23.12 31.04 39.41 46 49.04 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	Heat gains from water h	eating, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	1] + 0.8 >	((46)m	+ (57)m	+ (59)m]	
5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 144.54 166) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 47.71 42.37 34.46 26.09 19.5 16.46 17.79 23.12 31.04 39.41 46 49.04 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	(65)m= 56.04 49.19	51.19 45.24	43.86	38.51	36.34	40.76	40.97	46.94	50.46	54.47		(65)
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 144.54	include (57)m in calcu	ulation of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	5. Internal gains (see	Table 5 and 5a):									
(66)m=	Metabolic gains (Table 5	5), Watts										
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 47.71 42.37 34.46 26.09 19.5 16.46 17.79 23.12 31.04 39.41 46 49.04 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(67)m= 47.71 42.37 34.46 26.09 19.5 16.46 17.79 23.12 31.04 39.41 46 49.04 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 <td>(66)m= 144.54 144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td>144.54</td> <td></td> <td>(66)</td>	(66)m= 144.54 144.54	144.54	144.54	144.54	144.54	144.54	144.54	144.54	144.54	144.54		(66)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	Lighting gains (calculate	ed in Appendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(68)m= 318.87 322.18 313.84 296.09 273.68 252.62 238.55 235.24 243.58 261.33 283.74 304.8 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	(67)m= 47.71 42.37	34.46 26.09	19.5	16.46	17.79	23.12	31.04	39.41	46	49.04		(67)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	Appliances gains (calcu	lated in Append	dix L, eq	uation L	13 or L1:	3a), alsc	see Ta	ble 5				
(69)m= 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 51.86 (69)	(68)m= 318.87 322.18	313.84 296.09	273.68	252.62	238.55	235.24	243.58	261.33	283.74	304.8		(68)
	Cooking gains (calculate	ed in Appendix	L, equat	tion L15	or L15a)	, also se	e Table	5				
Pumps and fans gains (Table 5a)	(69)m= 51.86 51.86	51.86 51.86	51.86	51.86	51.86	51.86	51.86	51.86	51.86	51.86		(69)
	Pumps and fans gains (Table 5a)										
(70)m= 3 3 3 3 3 3 3 3 3 3 (70)	(70)m= 3 3	3 3	3	3	3	3	3	3	3	3		(70)

Losses e.g. evaporation (negative values) (Table 5)														
(71)m=	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36	-96.36]	(71)
Water	heating	gains (T	able 5)										-	
(72)m=	75.33	73.21	68.81	62.83	58.94	53.48	48.84	54.79	56.91	63.09	70.08	73.22		(72)
Total i	nternal	gains =	:	-		(66)	m + (67)m	+ (68)m +	+ (69)m + (70)m + (7	1)m + (72)	m	•	
(73)m=	544.95	540.8	520.15	488.05	455.17	425.61	408.22	416.2	434.57	466.88	502.86	530.09		(73)
6. Solar gains:														

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation

_		calculated using Access Facto Table 6d		Area m ²	a and	Flux Table 6a	tions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	0.55	x	10.63	×	0.63	x	0.7] =	1.79	(74)
North	0.9x	0.77	x	0.94	x	10.63	x	0.63	x	0.7	j =	3.05	(74)
North	0.9x	0.77	х	0.73	x	10.63	x	0.63	х	0.7	=	2.37	(74)
North	0.9x	0.77	x	0.94	x	10.63	x	0.63	x	0.7] =	3.05	(74)
North	0.9x	0.77	x	0.82	x	10.63	x	0.63	x	0.7] =	2.66	(74)
North	0.9x	0.77	x	2.22	X	10.63	X	0.63	x	0.7	=	7.21	(74)
North	0.9x	0.77	x	0.55	X	20.32	X	0.63	x	0.7	=	3.42	(74)
North	0.9x	0.77	x	0.94	x	20.32	X	0.63	x	0.7	=	5.84	(74)
North	0.9x	0.77	X	0.73	x	20.32	x	0.63	x	0.7	=	4.53	(74)
North	0.9x	0.77	X	0.94	x	20.32	x	0.63	x	0.7	=	5.84	(74)
North	0.9x	0.77	X	0.82	x	20.32	X	0.63	x	0.7	=	5.09	(74)
North	0.9x	0.77	X	2.22	X	20.32	X	0.63	X	0.7	=	13.79	(74)
North	0.9x	0.77	X	0.55	X	34.53	X	0.63	X	0.7	=	5.8	(74)
North	0.9x	0.77	X	0.94	X	34.53	X	0.63	X	0.7	=	9.92	(74)
North	0.9x	0.77	X	0.73	X	34.53	X	0.63	X	0.7	=	7.7	(74)
North	0.9x	0.77	X	0.94	X	34.53	X	0.63	x	0.7	=	9.92	(74)
North	0.9x	0.77	X	0.82	x	34.53	X	0.63	x	0.7	=	8.65	(74)
North	0.9x	0.77	X	2.22	x	34.53	X	0.63	X	0.7	=	23.43	(74)
North	0.9x	0.77	X	0.55	x	55.46	x	0.63	X	0.7	=	9.32	(74)
North	0.9x	0.77	X	0.94	X	55.46	X	0.63	X	0.7	=	15.93	(74)
North	0.9x	0.77	X	0.73	X	55.46	X	0.63	X	0.7	=	12.37	(74)
North	0.9x	0.77	Х	0.94	X	55.46	X	0.63	X	0.7	=	15.93	(74)
North	0.9x	0.77	х	0.82	X	55.46	X	0.63	X	0.7	=	13.9	(74)
North	0.9x	0.77	X	2.22	X	55.46	X	0.63	X	0.7	=	37.63	(74)
North	0.9x	0.77	X	0.55	X	74.72	X	0.63	X	0.7	=	12.56	(74)
North	0.9x	0.77	X	0.94	X	74.72	X	0.63	X	0.7	=	21.46	(74)
North	0.9x	0.77	x	0.73	x	74.72	X	0.63	x	0.7	=	16.67	(74)
North	0.9x	0.77	x	0.94	X	74.72	X	0.63	x	0.7	=	21.46	(74)
North	0.9x	0.77	x	0.82	x	74.72	X	0.63	x	0.7	=	18.72	(74)
North	0.9x	0.77	X	2.22	х	74.72	X	0.63	X	0.7	=	50.69	(74)

NI d	_		1		1				l				_
North	0.9x	0.77	X	0.55	X	79.99	X	0.63	X	0.7	=	13.44	(74)
North	0.9x	0.77	X	0.94	X	79.99	X	0.63	X	0.7	=	22.98	(74)
North	0.9x	0.77	X	0.73	X	79.99	X	0.63	X	0.7	=	17.84	(74)
North	0.9x	0.77	X	0.94	X	79.99	X	0.63	X	0.7	=	22.98	(74)
North	0.9x	0.77	X	0.82	X	79.99	X	0.63	X	0.7	=	20.04	(74)
North	0.9x	0.77	X	2.22	X	79.99	X	0.63	X	0.7	=	54.27	(74)
North	0.9x	0.77	X	0.55	X	74.68	X	0.63	x	0.7	=	12.55	(74)
North	0.9x	0.77	X	0.94	X	74.68	X	0.63	X	0.7	=	21.45	(74)
North	0.9x	0.77	X	0.73	X	74.68	X	0.63	X	0.7	=	16.66	(74)
North	0.9x	0.77	X	0.94	X	74.68	X	0.63	X	0.7	=	21.45	(74)
North	0.9x	0.77	X	0.82	X	74.68	X	0.63	x	0.7	=	18.71	(74)
North	0.9x	0.77	X	2.22	x	74.68	x	0.63	x	0.7	=	50.67	(74)
North	0.9x	0.77	X	0.55	x	59.25	x	0.63	x	0.7	=	9.96	(74)
North	0.9x	0.77	X	0.94	x	59.25	x	0.63	x	0.7	=	17.02	(74)
North	0.9x	0.77	X	0.73	x	59.25	x	0.63	x	0.7	=	13.22	(74)
North	0.9x	0.77	X	0.94	x	59.25	x	0.63	x	0.7	=	17.02	(74)
North	0.9x	0.77	X	0.82	x	59.25	x	0.63	x	0.7	=	14.85	(74)
North	0.9x	0.77	X	2.22	x	59.25	x	0.63	x	0.7	=	40.2	(74)
North	0.9x	0.77	X	0.55	x	41.52	x	0.63	x	0.7	=	6.98	(74)
North	0.9x	0.77	X	0.94	X	41.52	X	0.63	x	0.7	=	11.93	(74)
North	0.9x	0.77	X	0.73	X	41.52	X	0.63	X	0.7	=	9.26	(74)
North	0.9x	0.77	X	0.94	x	41.52	x	0.63	x	0.7	=	11.93	(74)
North	0.9x	0.77	X	0.82	x	41.52	x	0.63	x	0.7	=	10.4	(74)
North	0.9x	0.77	X	2.22	X	41.52	X	0.63	x	0.7	=	28.17	(74)
North	0.9x	0.77	X	0.55	X	24.19	X	0.63	x	0.7	=	4.07	(74)
North	0.9x	0.77	X	0.94	X	24.19	X	0.63	X	0.7	=	6.95	(74)
North	0.9x	0.77	X	0.73	X	24.19	X	0.63	X	0.7	=	5.4	(74)
North	0.9x	0.77	X	0.94	X	24.19	X	0.63	X	0.7	=	6.95	(74)
North	0.9x	0.77	X	0.82	X	24.19	X	0.63	x	0.7	=	6.06	(74)
North	0.9x	0.77	X	2.22	X	24.19	X	0.63	X	0.7	=	16.41	(74)
North	0.9x	0.77	X	0.55	X	13.12	X	0.63	X	0.7	=	2.2	(74)
North	0.9x	0.77	X	0.94	X	13.12	X	0.63	X	0.7	=	3.77	(74)
North	0.9x	0.77	X	0.73	X	13.12	X	0.63	X	0.7	=	2.93	(74)
North	0.9x	0.77	X	0.94	X	13.12	X	0.63	X	0.7	=	3.77	(74)
North	0.9x	0.77	X	0.82	X	13.12	X	0.63	X	0.7	=	3.29	(74)
North	0.9x	0.77	X	2.22	x	13.12	x	0.63	x	0.7	=	8.9	(74)
North	0.9x	0.77	X	0.55	x	8.86	x	0.63	x	0.7	=	1.49	(74)
North	0.9x	0.77	X	0.94	x	8.86	x	0.63	x	0.7	=	2.55	(74)
North	0.9x	0.77	x	0.73	x	8.86	x	0.63	x	0.7	=	1.98	(74)
North	0.9x	0.77	X	0.94	x	8.86	x	0.63	x	0.7	=	2.55	(74)
North	0.9x	0.77	X	0.82	X	8.86	X	0.63	X	0.7	=	2.22	(74)

North	0.9x	0.77	X	2.22	X	8.86	X	0.63	X	0.7	=	6.01	(74)
East	0.9x	0.77	X	1.46	X	19.64	X	0.63	x	0.7	=	8.76	(76)
East	0.9x	0.77	X	1.46	X	19.64	X	0.63	x	0.7	=	8.76	(76)
East	0.9x	0.77	X	0.64	X	19.64	X	0.63	x	0.7	=	3.84	(76)
East	0.9x	0.77	X	1.46	X	38.42	x	0.63	x	0.7	=	17.14	(76)
East	0.9x	0.77	X	1.46	X	38.42	X	0.63	x	0.7	=	17.14	(76)
East	0.9x	0.77	X	0.64	X	38.42	X	0.63	x	0.7	=	7.51	(76)
East	0.9x	0.77	X	1.46	X	63.27	X	0.63	X	0.7	=	28.23	(76)
East	0.9x	0.77	X	1.46	X	63.27	X	0.63	X	0.7	=	28.23	(76)
East	0.9x	0.77	X	0.64	X	63.27	X	0.63	x	0.7	=	12.38	(76)
East	0.9x	0.77	X	1.46	X	92.28	X	0.63	X	0.7	=	41.17	(76)
East	0.9x	0.77	X	1.46	X	92.28	X	0.63	x	0.7	=	41.17	(76)
East	0.9x	0.77	X	0.64	X	92.28	X	0.63	X	0.7	=	18.05	(76)
East	0.9x	0.77	X	1.46	X	113.09	x	0.63	x	0.7	=	50.46	(76)
East	0.9x	0.77	X	1.46	X	113.09	X	0.63	x	0.7	=	50.46	(76)
East	0.9x	0.77	X	0.64	X	113.09	x	0.63	x	0.7	=	22.12	(76)
East	0.9x	0.77	X	1.46	X	115.77	x	0.63	x	0.7	=	51.66	(76)
East	0.9x	0.77	X	1.46	X	115.77	X	0.63	x	0.7	=	51.66	(76)
East	0.9x	0.77	X	0.64	X	115.77	X	0.63	X	0.7	=	22.64	(76)
East	0.9x	0.77	X	1.46	X	110.22	x	0.63	x	0.7	=	49.18	(76)
East	0.9x	0.77	X	1.46	X	110.22	X	0.63	x	0.7	=	49.18	(76)
East	0.9x	0.77	X	0.64	X	110.22	X	0.63	X	0.7	=	21.56	(76)
East	0.9x	0.77	X	1.46	X	94.68	X	0.63	X	0.7	=	42.24	(76)
East	0.9x	0.77	X	1.46	X	94.68	X	0.63	X	0.7	=	42.24	(76)
East	0.9x	0.77	X	0.64	X	94.68	X	0.63	X	0.7	=	18.52	(76)
East	0.9x	0.77	X	1.46	X	73.59	X	0.63	X	0.7	=	32.84	(76)
East	0.9x	0.77	X	1.46	X	73.59	X	0.63	x	0.7	=	32.84	(76)
East	0.9x	0.77	X	0.64	X	73.59	X	0.63	X	0.7	=	14.39	(76)
East	0.9x	0.77	X	1.46	X	45.59	x	0.63	x	0.7	=	20.34	(76)
East	0.9x	0.77	X	1.46	X	45.59	x	0.63	x	0.7	=	20.34	(76)
East	0.9x	0.77	x	0.64	X	45.59	x	0.63	x	0.7	=	8.92	(76)
East	0.9x	0.77	X	1.46	X	24.49	x	0.63	x	0.7	=	10.93	(76)
East	0.9x	0.77	X	1.46	X	24.49	x	0.63	x	0.7	=	10.93	(76)
East	0.9x	0.77	X	0.64	X	24.49	X	0.63	X	0.7	=	4.79	(76)
East	0.9x	0.77	X	1.46	X	16.15	x	0.63	x	0.7	=	7.21	(76)
East	0.9x	0.77	X	1.46	X	16.15	x	0.63	x	0.7	=	7.21	(76)
East	0.9x	0.77	X	0.64	X	16.15	X	0.63	x	0.7	=	3.16	(76)
West	0.9x	0.77	X	3.18	X	19.64	X	0.63	x	0.7	=	19.09	(80)
West	0.9x	0.77	X	1.32	X	19.64	x	0.63	x	0.7	=	7.92	(80)
West	0.9x	0.77	X	1.46	X	19.64	X	0.63	x	0.7	=	8.76	(80)
West	0.9x	0.77	X	0.7	X	19.64	X	0.63	X	0.7	=	4.2	(80)

14/	_		7		1		1		l		1		٦
West	0.9x	0.77	X	3.18	X	38.42	X	0.63	X	0.7	=	37.34	(80)
West	0.9x	0.77	X	1.32	X	38.42	X	0.63	X	0.7	=	15.5	(80)
West	0.9x	0.77	X	1.46	X	38.42	X	0.63	X	0.7	=	17.14	(80)
West	0.9x	0.77	X	0.7	X	38.42	X	0.63	X	0.7	=	8.22	(80)
West	0.9x	0.77	X	3.18	X	63.27	X	0.63	X	0.7	=	61.49	(80)
West	0.9x	0.77	X	1.32	X	63.27	X	0.63	X	0.7	=	25.52	(80)
West	0.9x	0.77	X	1.46	X	63.27	X	0.63	X	0.7	=	28.23	(80)
West	0.9x	0.77	X	0.7	X	63.27	X	0.63	X	0.7	=	13.54	(80)
West	0.9x	0.77	X	3.18	X	92.28	X	0.63	X	0.7	=	89.68	(80)
West	0.9x	0.77	X	1.32	X	92.28	X	0.63	X	0.7	=	37.23	(80)
West	0.9x	0.77	X	1.46	x	92.28	X	0.63	X	0.7	=	41.17	(80)
West	0.9x	0.77	X	0.7	X	92.28	X	0.63	X	0.7	=	19.74	(80)
West	0.9x	0.77	X	3.18	X	113.09	X	0.63	X	0.7	=	109.91	(80)
West	0.9x	0.77	X	1.32	X	113.09	X	0.63	x	0.7	=	45.62	(80)
West	0.9x	0.77	X	1.46	x	113.09	X	0.63	x	0.7	=	50.46	(80)
West	0.9x	0.77	X	0.7	x	113.09	x	0.63	x	0.7	=	24.19	(80)
West	0.9x	0.77	X	3.18	x	115.77	x	0.63	x	0.7	=	112.51	(80)
West	0.9x	0.77	X	1.32	x	115.77	x	0.63	x	0.7	=	46.7	(80)
West	0.9x	0.77	X	1.46	x	115.77	x	0.63	x	0.7	=	51.66	(80)
West	0.9x	0.77	X	0.7	x	115.77	x	0.63	x	0.7	=	24.77	(80)
West	0.9x	0.77	X	3.18	x	110.22	x	0.63	x	0.7	=	107.12	(80)
West	0.9x	0.77	X	1.32	x	110.22	x	0.63	x	0.7	=	44.46	(80)
West	0.9x	0.77	X	1.46	X	110.22	X	0.63	X	0.7	=	49.18	(80)
West	0.9x	0.77	X	0.7	x	110.22	x	0.63	x	0.7	=	23.58	(80)
West	0.9x	0.77	X	3.18	x	94.68	x	0.63	x	0.7	=	92.01	(80)
West	0.9x	0.77	X	1.32	x	94.68	x	0.63	x	0.7	=	38.19	(80)
West	0.9x	0.77	X	1.46	x	94.68	X	0.63	x	0.7	=	42.24	(80)
West	0.9x	0.77	X	0.7	x	94.68	x	0.63	x	0.7	=	20.25	(80)
West	0.9x	0.77	X	3.18	x	73.59	x	0.63	x	0.7	=	71.52	(80)
West	0.9x	0.77	X	1.32	x	73.59	x	0.63	x	0.7	=	29.69	(80)
West	0.9x	0.77	X	1.46	x	73.59	x	0.63	x	0.7	=	32.84	(80)
West	0.9x	0.77	X	0.7	X	73.59	x	0.63	X	0.7	=	15.74	(80)
West	0.9x	0.77	X	3.18	x	45.59	x	0.63	x	0.7	=	44.31	(80)
West	0.9x	0.77	X	1.32	x	45.59	x	0.63	x	0.7	=	18.39	(80)
West	0.9x	0.77	X	1.46	x	45.59	x	0.63	x	0.7	=	20.34	(80)
West	0.9x	0.77	X	0.7	x	45.59	x	0.63	x	0.7	=	9.75	(80)
West	0.9x	0.77	X	3.18	x	24.49	x	0.63	x	0.7	j =	23.8	(80)
West	0.9x	0.77	X	1.32	x	24.49	x	0.63	x	0.7	=	9.88	(80)
West	0.9x	0.77	X	1.46	x	24.49	x	0.63	x	0.7	=	10.93	(80)
West	0.9x	0.77	X	0.7	x	24.49	x	0.63	x	0.7	=	5.24	(80)
West	0.9x	0.77	X	3.18	x	16.15	x	0.63	x	0.7	=	15.7	(80)

West	0.04					., I		0.45	1						0.50	7(90)
West	0.9x 0.9x	0.77	×	1.3	==	X		6.15	l x		0.63	_	0.7	=	6.52	(80)
West	0.9x	0.77	X	1.4	==	X		6.15]]		0.63	╡╞	0.7		7.21	(80)
WCSt	0.98	0.77	X	0.	/	X	1	6.15	X		0.63	x	0.7	=	3.46	(80)
Solar	raine in	watts, ca	alculator	l for eac	n month				(83)m	_ Sı	um(74)m .	(82)m				
(83)m=	81.49	158.51	263.05	393.32	494.8	$\overline{}$	13.15	485.75	407	_	308.51	188.23	101.34	67.24		(83)
	gains – i	nternal a	and solar	· (84)m =	- (73)m -	<u> </u>	33)m	, watts	<u> </u>	!			!			
(84)m=	626.44	699.3	783.2	881.36	949.97	93	38.76	893.97	824	.17	743.08	655.1	604.2	597.34		(84)
7. Me	ean inter	nal temp	perature	(heating	season)				•						
		during h					area 1	from Tab	ole 9,	Th	1 (°C)				21	(85)
Utilis	ation fac	ctor for g	ains for	living are	ea, h1,m	(se	ee Ta	ble 9a)						ļ		
	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
(86)m=	0.94	0.92	0.88	0.8	0.69	().55	0.43	0.4	.7	0.67	0.84	0.92	0.95		(86)
Mear	interna	l temper	ature in	living are	ea T1 (fo	ollo	w ste	ps 3 to 7	in T	able	e 9c)				!	
(87)m=	18.68	18.94	19.4	19.98	20.47		0.79	20.92	20.		20.64	20	19.24	18.63		(87)
Tomr	oraturo	during h	neating r	oriode ir	roet of	<u>ل</u> سا	alling	from Ta	hla (>2 (°C)		<u> </u>	ı		
(88)m=	19.87	19.87	19.87	19.88	19.88	_	9.89	19.89	19.	. 	19.89	19.88	19.88	19.88		(88)
		l	<u> </u>			<u> </u>			<u> </u>				10.00			` '
	0.93	tor for <u>g</u>	0.86	0.77	welling, 0.64	_	m (se	0.33	9a) 0.3	. 1	0.6	0.81	0.91	0.94		(89)
(89)m=	0.93	0.91	0.00	0.77	0.64).40	0.33	0.3	00	0.6	0.61	0.91	0.94		(69)
		l temper	ì			Ť	<u> </u>		·	_					ı	
(90)m=	16.82	17.19	17.84	18.65	19.31	1	9.71	19.84	19.	82	19.54	18.7	17.63	16.74		(90) —
											T	LA = LIVI	ig area ÷ (4	4) =	0.16	(91)
Mear	interna	l temper	ature (fo	r the wh	ole dwe	lling	g) = fl	_A × T1	+ (1	– fL	A) × T2				i	
(92)m=	17.12	17.47	18.09	18.87	19.5	1	9.88	20.02	20)	19.72	18.91	17.89	17.05		(92)
		nent to t		-		_				$\overline{}$					ı	
	16.97	<u> </u>	17.94	18.72	19.35	1	9.73	19.87	19.	85	19.57	18.76	17.74	16.9		(93)
		iting requ								0.1		: /	- 0'			
		mean int factor fo				ed	at ste	ep 11 of	labi	e 9b	o, so tha	t II,m=(76)m an	d re-calc	culate	
1110 0	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
Utilis		tor for g		<u> </u>				.		<u> </u>	<u> </u>		1			
(94)m=	0.9	0.87	0.82	0.74	0.62).47	0.33	0.3	7	0.58	0.77	0.87	0.91		(94)
Usefu	ul gains,	hmGm	, W = (9	4)m x (84	4)m					'			•			
(95)m=	562.61	609.67	644.86	650.29	586.67	43	38.62	296.82	307	.91	432.13	507.43	525.12	541.47		(95)
Mont	hly aver	age exte	rnal tem	perature	from Ta	able	e 8									
(96)m=	4.3	4.9	6.5	8.9	11.7	1	14.6	16.6	16.	4	14.1	10.6	7.1	4.2		(96)
		e for me	1			_				_					I	
		1209.42			735.54		80.08	311.81	328		523.68	785.29	1027.31	1229.87		(97)
•		g require	i			/Vh				Ť	<u>`</u>		·	540.47	1	
(98)m=	501.02	403.03	347.34	212.92	110.76		0	0	0		0	206.73	361.57	512.17		7(00)
										rotal	per year	(kWh/yea	r) = Sum(9	8) _{15,912} =	2655.55	(98)
Spac	e heatin	g require	ement in	kWh/m²	/year										34.37	(99)

9a. Energy requirements – Individual heat	ina systems i	ncluding	micro-C	HP)					
Space heating:	ang by sterns ii	Horading		7-11) —					
Fraction of space heat from secondary/su	upplementary	system						0	(201)
Fraction of space heat from main system	(s)		(202) = 1 -	- (201) =				1	(202)
Fraction of total heating from main system	m 1		(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficiency of main space heating system	1							92.4	(206)
Efficiency of secondary/supplementary h	eating system	າ, %						0	(208)
Jan Feb Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heating requirement (calculated a	 				·			1	
501.02 403.03 347.34 212.92 11	10.76 0	0	0	0	206.73	361.57	512.17		
(211) m = {[(98)m x (204)] } x 100 ÷ (206)	<u> </u>		ı		<u> </u>	I	ī	1	(211)
542.23 436.18 375.91 230.43 11	19.87 0	0	0 Tota	0	223.73	391.31 211) _{15.1012}	554.3		٦؞؞؞
Consolination field (speed down) 1988-			TOIA	i (KVVII/yea	ar) =Surri(z	2 1) _{15,1012}	₹	2873.97	(211)
Space heating fuel (secondary), kWh/mo = $\{[(98)m \times (201)]\} \times 100 \div (208)$	or i CC1								
(215)m= 0 0 0 0	0 0	0	0	0	0	0	0]	
	!		Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u> </u>	0	(215)
Water heating									_
Output from water heater (calculated abov						l	l .=	1	
174.96 153.74 160.35 142.22 13 Efficiency of water heater	38.27 121.96	115.64	128.96	129.39	147.56	157.95	170.24	0.7	(216)
	8.31 87	87	87	87	88.73	89.07	89.23	87	(217) (217)
Fuel for water heating, kWh/month	0.51 01	07		01	00.73	09.07	09.23	J	(211)
(219) m = (64) m x $100 \div (217)$ m	,							,	
(219)m= 196.14 172.44 180.11 160.21 15	56.57 140.19	132.92	148.23	148.73	166.31	177.34	190.78		_
			Tota	I = Sum(2				1969.98	(219)
Annual totals Space heating fuel used, main system 1					k'	Wh/year	•	kWh/year 2873.97	
									<u> </u>
Water heating fuel used								1969.98	
Electricity for pumps, fans and electric kee	ep-not							1	
central heating pump:							30		(2300
boiler with a fan-assisted flue							45		(230e
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			75	(231)
Electricity for lighting								337.02	(232)
Electricity generated by PVs								-1281.68	(233)
Total delivered energy for all uses (211)	(221) + (231)	+ (232).	(237b)	=				3974.29	(338)
10a. Fuel costs - individual heating syste	ms:								
					.			F. 10	
	Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main system 1		l) x			3.4		x 0.01 =	100.01	(240)
		3) x					x 0.01 =		_՝ ՝
Space heating - main system 2	(213) X			0		A U.U1 =	0	(241)

Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	68.56 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	9.89 (249)
(if off-peak tariff, list each of (230a) to (230g) s			
Energy for lighting	(232)	13.19 x 0.01 =	44.45
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 x 0.01 =	-169.05 (252)
Appendix Q items: repeat lines (253) and (254)) as needed		
	(247) + (250)(254) =		173.86 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) >	((256)] ÷ [(4) + 45.0] =		0.6 (257)
SAP rating (Section 12)			91.67 (258)
12a. CO2 emissions – Individual heating system	ems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	620.78 (261)
Space heating (secondary)	(215) x	0.519	0 (263)
Water heating	(219) x	0.216	425.52 (264)
Space and water heating	(261) + (262) + (263) + (2	264) =	1046.29 (265)
Electricity for pumps, fans and electric keep-ho	ot (231) x	0.519	38.93 (267)
Electricity for lighting	(232) x	0.519	174.91 (268)
Energy saving/generation technologies Item 1		0.519 =	-665.19 (269)
Total CO2, kg/year		sum of (265)(271) =	594.94 (272)
CO2 emissions per m ²		(272) ÷ (4) =	7.7 (273)
EI rating (section 14)			93 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	3506.24 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2403.37 (264)
Space and water heating	(261) + (262) + (263) + (2	264) =	5909.62 (265)
Electricity for pumps, fans and electric keep-ho	ot (231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1034.66 (268)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 37

Dwelling type: Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:North

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 244.79 (P1)

Transmission heat loss coefficient: 62.3

Summer heat loss coefficient: 307.13 (P2)

Overhangs:

Ratio:	Z_overhangs:
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
	0 0 0 0 0 0

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North (W_72)	0.85	0.9	1	0.76	(P8)
East (W_73)	0.85	0.9	1	0.76	(P8)
North (W_74)	0.85	0.9	1	0.76	(P8)
North (W_75)	0.85	0.9	1	0.76	(P8)
West (W_76)	0.85	0.9	1	0.76	(P8)
East (W_77)	0.85	0.9	1	0.76	(P8)
North (W_78)	0.85	0.9	1	0.76	(P8)
West (W_79)	0.85	0.9	1	0.76	(P8)
West (W_80)	0.85	0.9	1	0.76	(P8)
North (W_81)	0.85	0.9	1	0.76	(P8)
East (W_82)	0.85	0.9	1	0.76	(P8)
West (W_83)	0.85	0.9	1	0.76	(P8)
North (W_84)	0.85	0.9	1	0.76	(P8)

Solar gains

Orientation Area Flux g_ FF Shading Gains

SAP 2012 Overheating Assessment

North (W_72) East (W_73)	0.9 x 0.9 x	0.55 1.46	82.12 119.47	0.63 0.63	0.7 0.7	0.76 0.76	13.71 52.96
North (W_74)	0.9 x 0.9 x	0.94	82.12	0.63	0.7	0.76	23.44
North (W_75)	0.9 x 0.9 x	0.73	82.12 82.12	0.63	0.7	0.76	18.2
West (W_76)	0.9 x	3.18	119.47	0.63	0.7	0.76	115.35
East (W_77)	0.9 x	1.46	119.47	0.63	0.7	0.76	52.96
North (W_78)	0.9 x	0.94	82.12	0.63	0.7	0.76	23.44
West (W_79)	0.9 x	1.32	119.47	0.63	0.7	0.76	47.88
West (W_80)	0.9 x	1.46	119.47	0.63	0.7	0.76	52.96
North (W_81)	0.9 x	0.82	82.12	0.63	0.7	0.76	20.45
East (W_82)	0.9 x	0.64	119.47	0.63	0.7	0.76	23.22
West (W_83)	0.9 x	0.7	119.47	0.63	0.7	0.76	25.39
North (W_84)	0.9 x	2.22	82.12	0.63	0.7	0.76	55.36
						Total	525.33 (P3/P4)

Internal gains:

	June	July	August	
Internal gains	422.61	405.22	413.2	
Total summer gains	982.84	930.55	858.64	(P5)
Summer gain/loss ratio	3.2	3.03	2.8	(P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6	
Thermal mass temperature increment	1.3	1.3	1.3	
Threshold temperature	19.9	21.93	21.7	(P7)
Likelihood of high internal temperature	Not significant	Slight	Slight	

Assessment of likelihood of high internal temperature:

Slight