Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:06:47

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 93.48m²Site Reference:Bell Road, BottishamPlot Reference:Plot 39

Address: Plot 39

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER)

16.46 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 7.29 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

46.4 kWh/m²

46.4 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 41.8 kWh/m²

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.37 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 018403):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular)

Efficiency 89.8 % SEDBUK2009

Minimum 88.0 % OK

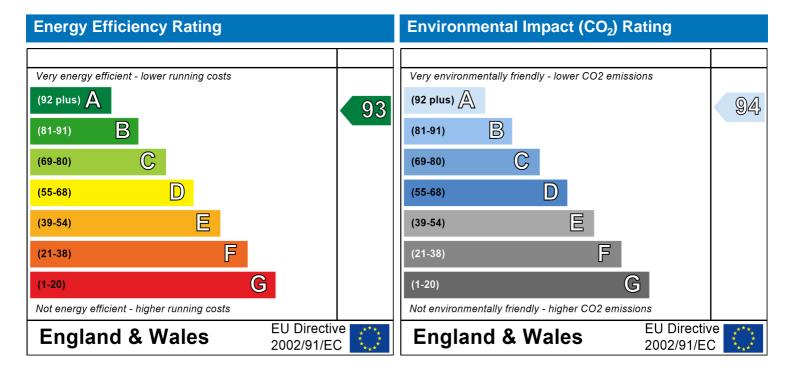
Secondary heating system: None

OK

Regulations Compliance Report

			<u> </u>
5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.	•	
	Permitted by DBSCG: 2.3	0 kWh/day	OK
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing and ele	ectrical services	OK
Hot water controls:	Cylinderstat		OK
	Independent timer for DH\	N	OK
Boiler interlock:	Yes		oK
7 Low energy lights			
Percentage of fixed lights with I	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (East Anglia):		Slight	ок
Based on:		ŭ	
Overshading:		Average or unknown	
Windows facing: South West		1.35m²	
Windows facing: North East		0.86m²	
Windows facing: North East		1.48m²	
Windows facing: North East		1.4m²	
Windows facing: South West		3.33m²	
Windows facing: South West		0.99m²	
Windows facing: South East		0.5m²	
Windows facing: South East		0.5m²	
Windows facing: South West		1.46m²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key features		0.44.101/_01/	
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

Predicted Energy Assessment


Plot 39

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 93.48 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Address: Plot 39 Located in: **England** Region: East Anglia

UPRN:

03 November 2022 Date of assessment: 29 November 2022 Date of certificate: New dwelling design stage Assessment type:

New dwelling Transaction type: Tenure type: Unknown Related party disclosure: No related party Thermal Mass Parameter: Indicative Value Low

True Water use <= 125 litres/person/day:

508 PCDF Version:

Dwelling type: House

Semi-detached Detachment:

2022 Year Completed:

Floor Location: Floor area:

46.74 m² 2.4 m Floor 0 Floor 1 46.74 m² 2.4 m

16.24 m² (fraction 0.174) Living area:

North East Front of dwelling faces:

	peni	ına	tvn	00.
\sim	ν CIII	III I G	ινν	vs.

Name:	Source:	Type:	Glazing:		Argon:	Frame:
D_12	Manufacturer	Solid				
W_97	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_98	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_99	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_100	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_101	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_102	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_103	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_104	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
W_105	Manufacturer	Windows	low-E, En =	0.05, soft coat	Yes	
Name:	Gap:	Frame Fac	ctor: g-value:	U-value:	Area:	No. of Openings:
D_12	mm	0	0	1.2	2.03	1
W_97	16mm or more	0.7	0.63	1.4	1.35	1
W_98	16mm or more	0.7	0.63	1.4	0.86	1
W_99	16mm or more	0.7	0.63	1.4	1.48	1
W_100	16mm or more	0.7	0.63	1.4	1.4	1
W_101	16mm or more	0.7	0.63	1.4	3.33	1
W_102	16mm or more	0.7	0.63	1.4	0.99	1
W_103	16mm or more	0.7	0.63	1.4	0.5	1
W_104	16mm or more	0.7	0.63	1.4	0.5	1
W_105	16mm or more	0.7	0.63	1.4	1.46	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D_12	Doors	Wall 1	North East		2.03	1
W_97	Windows	Wall 1	South West		1.35	1
W_98	Windows	Wall 1	North East		0.86	1
W_99	Windows	Wall 1	North East		1.48	1
W_100	Windows	Wall 1	North East		1.4	1

Storey height:

SAP Input

W_101	Windows	Wall 1	South West	3.33	1
W_102	Windows	Wall 1	South West	0.99	1
W_103	Windows	Wall 1	South East	0.5	1
W_104	Windows	Wall 1	South East	0.5	1
W_105	Windows	Wall 1	South West	1.46	1

Overshading: Average or unknown

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elemen	<u>its</u>						
Wall 1	99.4	13.9	85.5	0.19	0	False	N/A
Roof 1	46.74	0	46.74	0.11	0		N/A
Floor 1	46.74			0.11			N/A
Internal Elemen	ts						
INT FLOOR	<u>46.74</u>						N/A
Party Elements							
Party Wall	43.5						N/A
-							

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0744

Length	Psi-value	ĺ	
10.51	0.3	E2	Other lintels (including other steel lintels)
7.89	0.04	E3	Sill
25.3	0.05	E4	Jamb
19.49	0.16	E5	Ground floor (normal)
19.49	0.07	E6	Intermediate floor within a dwelling
10.96	0.06	E10	Eaves (insulation at ceiling level)
10.43	0.24	E12	Gable (insulation at ceiling level)
10.2	0.09	E16	Corner (normal)
10.2	0.06	E18	Party wall between dwellings
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.53	0	P2	Intermediate floor within a dwelling
0	0.16	P1	Ground floor
0	0.16	P1	
0	0	P2	
5.48	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of passive stacks: 0
Number of sides sheltered: 2

SAP Input

Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular boiler)
Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres

Cylinder insulation: Measured loss, 1.32kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: South West

Assess Zero Carbon Home: No

		User Detai	s:				
Assessor Name:	Liam Mason		oma Num	ber:	STRO	0033679	
Software Name:	Stroma FSAP 2012		tware Ve			on: 1.0.5.58	
		Property Add	ess: Plot 39)			
Address :	Plot 39						
1. Overall dwelling dimer	nsions:						
		Area(m²)	Av. Heigh	<u> </u>	Volume(m ³)
Ground floor		46.74	(1a) x	2.4	(2a) =	112.18	(3a)
First floor		46.74	(1b) x	2.4	(2b) =	112.18	(3b)
Total floor area TFA = (1a	u)+(1b)+(1c)+(1d)+(1e)+	(1n) 93.48	(4)				
Dwelling volume			(3a)+(3b	o)+(3c)+(3d)+(3	e)+(3n) =	224.35	(5)
2. Ventilation rate:							
		ondary other oting	er	total		m³ per hou	r
Number of chimneys	0 +	0 + 0	=	0	x 40 =	0	(6a)
Number of open flues	0 +	0 + 0	=	0	x 20 =	0	(6b)
Number of intermittent fan	ns			3	x 10 =	30	(7a)
Number of passive vents			Ī	0	x 10 =	0	(7b)
Number of flueless gas fir	es		Ī	0	x 40 =	0	(7c)
			_		- Air o	hangaa nar ha	<u> </u>
Inditantian due to chimpo	es flues and fame (60).	(6h) (7a) (7h) (7a) -	Г		7	hanges per ho	_
Infiltration due to chimney	een carried out or is intended,		vise continue f	30 rom (9) to (16)	÷ (5) =	0.13	(8)
Number of storeys in the		,,		(=)		0	(9)
Additional infiltration					[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel or timber fra	me or 0.35 for ma	sonry const	ruction		0	(11)
if both types of wall are pre deducting areas of opening	esent, use the value correspor gs): if equal user 0.35	nding to the greater wa	ll area (after				
If suspended wooden flo) or 0.1 (sealed),	else enter 0			0	(12)
If no draught lobby, ente	er 0.05, else enter 0					0	(13)
Percentage of windows	and doors draught strip	ped				0	(14)
Window infiltration			- [0.2 x (14) ÷			0	(15)
Infiltration rate				12) + (13) + (15		0	(16)
Air permeability value, o	•		-	netre of enve	elope area	5	(17)
If based on air permeabilit				to to to our or all		0.38	(18)
Air permeability value applies Number of sides sheltered		een done or a degree a	ır permeability	is being used			(19)
Shelter factor	4	(20)	= 1 - [0.075 x (19)] =		0.85	(20)
Infiltration rate incorporation	ng shelter factor	(21)	= (18) x (20) =			0.33	(21)
•						1 2.50	
Infiltration rate modified for	_						
	_	Jun Jul A	ug Sep	Oct 1	Nov Dec]	

4.4

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

(22)m=

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjuste	ed infiltra	ation rate	e (allowi	ng for sl	nelter an	d wind s	speed) =	(21a) x	(22a)m					
	0.42	0.41	0.4	0.36	0.35	0.31	0.31	0.3	0.33	0.35	0.37	0.38		
		c <i>tive air (</i> al ventila	•	rate for t	he appli	cable ca	se						0	(23a)
				endix N, (2	(3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
				iency in %									0	(23c)
a) If	balance	d mecha	anical ve	entilation	with he	at recove	ery (MVI	HR) (24a	a)m = (2	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat red	covery (N	ИV) (24b	o)m = (22	2b)m + (2	23b)		_	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,				ntilation	•	•								
	<u> </u>		<u> </u>	· ` ·	ŕ	í –	<u> </u>	ŕ	ŕ	.5 × (23b		<u> </u>	1	(24a)
(24c)m=		0	0	0	0	0	0	0	0	0	0	0	J	(24c)
				ole hous $m = (22)$						0.51				
(24d)m=	<u> </u>	0.58	0.58	0.56	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57]	(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in bo	x (25)				,	
(25)m=	0.59	0.58	0.58	0.56	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57]	(25)
3. Hea	at losse	s and he	eat loss i	paramet	er:									
ELEN		Gros				N.L. (A								ΑΧk
		area	_	Openin m	-	Net Ar A ,r		U-val W/m2		A X U (W/I	K)	k-value kJ/m²-l		kJ/K
Doors		area	_	•	-		m²				K)			
	ws Type		_	•	-	A ,r	m² x	W/m2	2K =	(W/I	K)			kJ/K
Window	ws Type ws Type	e 1	_	•	-	A ,r	m² x x1	W/m2	2K = - 0.04] =	(W/I 2.436	K)			kJ/K (26)
Window		e 1 e 2	_	•	-	A ,r 2.03	m ² x x ¹ x ¹	W/m2 1.2 /[1/(1.4)+	2K = 0.04] = 0.04] =	(W/I 2.436 1.79	K)			kJ/K (26) (27)
Window Window	ws Type	e 1 e 2 e 3	_	•	-	A ,r 2.03 1.35	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	$ \begin{array}{ccc} 2K & & & & \\ & & & & \\ \hline & 0.04] & = & \\ 0.04] & = & \\ 0.04] & = & \\ \end{array} $	(W/I 2.436 1.79 1.14	K)			kJ/K (26) (27) (27)
Window Window Window Window	ws Type ws Type	e 1 e 2 e 3	_	•	-	A ,r 2.03 1.35 0.86 1.48	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04]	(W/I 2.436 1.79 1.14 1.96	K)			kJ/K (26) (27) (27) (27)
Window Window Window Window	ws Type ws Type ws Type	e 1 e 2 e 3 e 4	_	•	-	A ,r 2.03 1.35 0.86 1.48	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14 1.96 1.86	K)			kJ/K (26) (27) (27) (27) (27)
Window Window Window Window Window	ws Type ws Type ws Type ws Type	2 1 2 2 3 3 4 4 4 5 5 6 6	_	•	-	A ,r 2.03 1.35 0.86 1.48 1.4 3.33	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] =	(W/I 2.436 1.79 1.14 1.96 1.86 4.41	K)			kJ/K (26) (27) (27) (27) (27) (27)
Window Window Window Window Window Window	ws Type ws Type ws Type ws Type ws Type	2 2 3 4 4 5 5 6 6 7	_	•	-	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31	K)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Window Window Window Window Window Window Window	ws Type ws Type ws Type ws Type ws Type ws Type	2 2 3 4 4 5 5 6 6 7 8 8	_	•	-	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	2.436 1.79 1.14 1.96 1.86 4.41 1.31	K)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Window Window Window Window Window Window Window	ws Type	2 2 3 4 4 5 5 6 6 7 8 8	_	•	-	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Window Window Window Window Window Window Window Window	ws Type	2 2 3 4 4 5 5 6 6 7 8 8	(m²)	•	ĮŽ	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Window Window Window Window Window Window Window Floor	ws Type	e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9	(m²)	· m	ĮŽ	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Window Wi	ws Type	2 1 2 2 3 4 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(m²)	13.9	ĮŽ	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Window Wi	ws Type	e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9	(m²)	13.9	ĮŽ	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Window Window Window Window Window Window Window Window Floor Walls Roof Total a	ws Type	e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9	(m²)	13.9	ĮŽ	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74 85.5 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19 0.11	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25 5.14				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

(26)...(30) + (32) =

Fabric heat loss, $W/K = S (A \times U)$

44.7

(33)

Heat capacity Cm	$n = S(A \times k)$						((28)	.(30) + (32	2) + (32a).	(32e) =	20098.38	(34)
Thermal mass pa	, ,	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value:	: Low		100	(35)
For design assessment can be used instead of	nts where the de	etails of the	•			ecisely the	indicative	values of	TMP in Ta	able 1f	100	(00)
Thermal bridges:			using Ap	pendix I	K						14.35	(36)
if details of thermal br		nown (36) =	= 0.05 x (3	1)			(33) +	(36) =			59.05	(37)
Ventilation heat lo	oss calculated	d monthly	/					,	25)m x (5)		00.00	(0.7
	Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	3.17 42.93	41.78	41.57	40.57	40.57	40.39	40.96	41.57	42	42.46		(38)
Heat transfer coe	fficient, W/K	•			•	•	(39)m	= (37) + (3	38)m		'	
(39)m= 102.47 10	02.22 101.97	100.83	100.61	99.62	99.62	99.43	100	100.61	101.05	101.5		
Heat loss parame	eter (HLP), W	/m²K						Average = = (39)m ÷	Sum(39) _{1.} (4)	12 /12=	100.83	(39)
(40)m= 1.1 1	1.09 1.09	1.08	1.08	1.07	1.07	1.06	1.07	1.08	1.08	1.09		
Number of days in	n month (Tab	le 1a)				-	,	Average =	Sum(40) _{1.}	12 /12=	1.08	(40)
Jan	Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28 31	30	31	30	31	31	30	31	30	31		(41)
	•	•									•	
4. Water heating	g energy requ	irement:								kWh/ye	ear:	
Assumed occupa	ncv N										Ì	
if TFA > 13.9, N if TFA £ 13.9, N	N = 1 + 1.76 x N = 1		`	,	•	, , -	,	ΓFA -13.	9)	67		(42)
· · · · · · · · · · · · · · · · · · ·	N = 1 + 1.76 x N = 1 not water usage verage hot water	ge in litre	es per da 5% if the a	ay Vd,av Iwelling is	erage = designed	(25 x N)	+ 36		9)	.62		(42)
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre	N = 1 + 1.76 x N = 1 not water usage verage hot water	ge in litre	es per da 5% if the d rater use, I	ay Vd,av Iwelling is	erage = designed	(25 x N) to achieve	+ 36 a water us		9)			, ,
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre	N = 1 + 1.76 x N = 1 not water usage rerage hot water es per person pers	ge in litre usage by r day (all w	es per da 5% if the d rater use, I	ay Vd,av Iwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36	se target o	9) 97	.62		, ,
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre Jan Hot water usage in litr	N = 1 + 1.76 x N = 1 not water usage rerage hot water es per person pers	ge in litre usage by r day (all w	es per da 5% if the d rater use, I	ay Vd,av Iwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	.62		, ,
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre Jan Hot water usage in litt (44)m= 107.38 10	N = 1 + 1.76 x N = 1 not water usage and water as per person person person person person person day for each as per day for each as per day for each as person d	ge in litre usage by s r day (all w Apr ach month	es per da 5% if the da vater use, I May Vd,m = fa 91.77	ay Vd,av Iwelling is not and co Jun ctor from	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Sur	9) Nov 103.48 m(44) ₁₁₂ =	.62 Dec	1171.47	, ,
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre Jan Hot water usage in litr (44)m= 107.38 10 Energy content of hot	N = 1 + 1.76 x N = 1 not water usage and water usage hot water es per person person person person per day for es per day for e	ge in litre usage by a r day (all w Apr ach month 95.67	es per da 5% if the of vater use, I May Vd,m = fa 91.77 0nthly = 4	ay Vd,av lwelling is not and co Jun ctor from 87.86	erage = designed and lid) Jul Table 1c x 87.86	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Suith (see Ta	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1	.62 Dec 107.38 c, 1d)	1171.47	(43)
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre Jan Hot water usage in litt (44)m= 107.38 10 Energy content of hot	N = 1 + 1.76 x N = 1 not water usage and water as per person person person person person person day for each as per day for each as per day for each as person d	ge in litre usage by s r day (all w Apr ach month	es per da 5% if the da vater use, I May Vd,m = fa 91.77	ay Vd,av Iwelling is not and co Jun ctor from	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67 0 kWh/mon	Oct 99.57 Total = Sur 130.1	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02	.62 Dec 107.38 c, 1d) 154.22		(43)
if TFA £ 13.9, N Annual average h Reduce the annual av not more that 125 litre Jan Hot water usage in litr (44)m= 107.38 10 Energy content of hot	N = 1 + 1.76 x N = 1 not water usage hot water es per person per Feb Mar res per day for es 03.48 99.57 water used - cas 39.28 143.72	ge in litre usage by s r day (all w Apr ach month 95.67	es per da 5% if the a a a a b a b a	ay Vd,av lwelling is not and co Jun ctor from 7 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Sur 130.1	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1	.62 Dec 107.38 c, 1d) 154.22	1171.47	(43)
if TFA £ 13.9, N Annual average h Reduce the annual average h Reduce the annual average in litre Jan Hot water usage in litre (44)m= 107.38 10 Energy content of hot (45)m= 159.25 13 If instantaneous water (46)m= 23.89 2	N = 1 + 1.76 x N = 1 not water usage hot water es per person per Feb Mar res per day for es 03.48 99.57 water used - cas 39.28 143.72 r heating at point 0.89 21.56	ge in litre usage by s r day (all w Apr ach month 95.67	es per da 5% if the a a a a b a b a	ay Vd,av lwelling is not and co Jun ctor from 7 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Sur 130.1	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02	.62 Dec 107.38 c, 1d) 154.22		(43)
if TFA £ 13.9, N Annual average h Reduce the annual average the annual average in liter. Jan Hot water usage in liter. (44)m= 107.38 10 Energy content of hot. (45)m= 159.25 13 If instantaneous water. (46)m= 23.89 20 Water storage loss	N = 1 + 1.76 x N = 1 not water usage and water usage hot water usage per person per person per day for each of the person of the	ge in litre usage by a r day (all w Apr ach month 95.67 lculated mo 125.3 t of use (no	es per da 5% if the da sater use, I May Vd,m = fa 91.77	ay Vd,av lwelling is not and co Jun ctor from 1 87.86 190 x Vd,r 103.75 r storage),	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth 19.52	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46)
if TFA £ 13.9, N Annual average h Reduce the annual average h Reduce the annual average in the second of the secon	N = 1 + 1.76 x N = 1 not water usage and water usage hot water es per person person person person de perso	ge in litre usage by a r day (all w Apr ach month 95.67 Iculated mo 125.3 t of use (no	es per da 5% if the of 5% if th	ay Vd,av lwelling is not and co Jun ctor from 7 87.86 190 x Vd,r 103.75 storage), 15.56	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 97m / 3600 110.32 boxes (46) 16.55 within sa	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth 19.52	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22		(43) (44) (45)
if TFA £ 13.9, N Annual average h Reduce the annual average h Reduce the annual average in litre Jan Hot water usage in litre (44)m= 107.38 10 Energy content of hot (45)m= 159.25 13 If instantaneous water (46)m= 23.89 20 Water storage loss Storage volume (IIII) If community head Otherwise if no st	N = 1 + 1.76 x N = 1 not water usage and water usage hot water usage per person person person person person person day for each and a second person p	ge in litre usage by a r day (all w Apr ach month 95.67 lculated mo 125.3 t of use (no 18.8 ang any so ank in dw	es per da 5% if the a vater use, I May Vd,m = fa 91.77 vater = fa 120.23 vater = fa 18.03 plar or Water a velling, e	ay Vd,av lwelling is not and co Jun ctor from 1 87.86 190 x Vd,r 103.75 storage), 15.56 /WHRS nter 110	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46)
if TFA £ 13.9, N Annual average h Reduce the annual average the annual average in liter. Jan Hot water usage in liter. (44)m= 107.38 10 Energy content of hot. (45)m= 159.25 13 If instantaneous water. (46)m= 23.89 2: Water storage loss Storage volume (III) If community hear.	N = 1 + 1.76 x N = 1 not water usage and water usage hot water usage for each of the series per person person person person day for each of the series per	ge in litre usage by a r day (all w Apr ach month 95.67 Iculated mo 125.3 It of use (no 18.8 and any so ank in dw er (this in	es per da 5% if the o eater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e acludes i	ay Vd,av lwelling is not and co Jun ctor from 87.86 190 x Vd,r 103.75 storage), 15.56 /WHRS nter 110 nstantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46)
if TFA £ 13.9, N Annual average h Reduce the annual average h Reduce the annual average h Reduce the annual average in littre Jan Hot water usage in littre (44)m= 107.38 10 Energy content of hot (45)m= 159.25 13 If instantaneous water (46)m= 23.89 20 Water storage loss Storage volume (II community head Otherwise if no st Water storage loss	N = 1 + 1.76 x N = 1 not water usage and water usage hot water usage per person person person person person person person day for each and a second person p	ge in litre usage by s r day (all w Apr ach month 95.67 Iculated mo 125.3 t of use (no 18.8 ang any so ank in dw er (this in	es per da 5% if the o eater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e acludes i	ay Vd,av lwelling is not and co Jun ctor from 87.86 190 x Vd,r 103.75 storage), 15.56 /WHRS nter 110 nstantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46) (47)
if TFA £ 13.9, N Annual average h Reduce the annual average h Reduce the annual average in liter Jan Hot water usage in liter (44)m= 107.38 10 Energy content of hot (45)m= 159.25 13 If instantaneous water (46)m= 23.89 20 Water storage loss Storage volume (If community head Otherwise if no st Water storage loss a) If manufacture	N = 1 + 1.76 x N = 1 not water usage yerage hot water es per person person person person person de person	ge in litre usage by s r day (all w Apr ach month 95.67 lculated mo 125.3 t of use (no 18.8 and any so ank in dw er (this in loss facto 2b e, kWh/ye	es per da 5% if the a vater use, if May $Vd,m = fa$ 91.77	ay Vd,av lwelling is not and co Jun ctor from 187.86 190 x Vd,r 103.75 storage), 15.56 /WHRS nter 110 nstantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 95.67 111.64 16.75 ame vess ers) ente	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38 c, 1d) 154.22 23.13 210		(43) (44) (45) (46) (47)

Hot water storage loss factor from Table 2 (kWh/litre/day)			0	(51)
If community heating see section 4.3				_
Volume factor from Table 2a			0	(52)
Temperature factor from Table 2b			0	(53)
Energy lost from water storage, kWh/year	(47) x (51) x (52) x (5	53) =	0	(54)
Enter (50) or (54) in (55)			0.71	(55)
Water storage loss calculated for each month	$((56)m = (55) \times (41)r$	n		
(56)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57)m = (56)	m where (H11) is	from Append	lix H
(57)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(57)
Primary circuit loss (annual) from Table 3			0	(58)
Primary circuit loss calculated for each month (59) m = $(58) \div$	365 × (41)m			
(modified by factor from Table H5 if there is solar water hea	` '	thermostat)		
(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26	23.26 22.51	23.26 22.51	23.26	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (4	1)m			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 0	0 0	0	(61)
				l · · ·
Total heat required for water heating calculated for each mon		<u> </u>	`	(62)
(62)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.6		175.46 185.9) ′
Solar DHW input calculated using Appendix G or Appendix H (negative quar		r contribution to w	ater heating)	
(add additional lines if FGHRS and/or WWHRS applies, see	'i '' '		+	1 (00)
(63)m= 0 0 0 0 0 0	0 0	0 0	0	(63)
Output from water heater			_	1
(64)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.65	155.68 155.53	175.46 185.9	2 199.58	
` '	100.00 100.00	173.40 103.9	2 199.36	
		ater heater (annua		2070.05 (64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa	ater heater (annua	l) ₁₁₂	
	Output from wa m + (61)m] + 0.8 x	ater heater (annua	l) ₁₁₂ m + (59)m	
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m=	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a):	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	Output from wa m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot wa	1 (46)m + (57) 79.55 82.34 82.34 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23	ater heater (annual [(46)m + (57) 79.55 82.34 ater is from co	m + (59)m 87.57 mmunity h	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99	(46)m + (57) 79.55 82.34 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 13a), also see Table	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the second f	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the stabolic gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 1	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the state of the	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the state of the	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 5 29.05 38.99 13a), also see Table 53.69 53.69 3 3 3	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02 53.69 3	(65) neating (66) (67) (68) (69)

Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$	
(73)m= 656.15 651 626.8 589.53 551.39 517.57 498.13 507.37 529.14 566.63 608.08 639.42	(73)
6. Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.	
○	ains (W)
Northeast 0.9x 0.77 x 0.86 x 11.28 x 0.63 x 0.7 =	2.97 (75)
Northeast 0.9x	5.1 (75)
Northeast 0.9x 0.77 x 1.4 x 11.28 x 0.63 x 0.7 =	4.83 (75)
Northeast 0.9x 0.77 x 0.86 x 22.97 x 0.63 x 0.7 =	6.04 (75)
Northeast 0.9x 0.77 x 1.48 x 22.97 x 0.63 x 0.7 =	10.39 (75)
Northeast 0.9x 0.77 x 1.4 x 22.97 x 0.63 x 0.7 =	9.83 (75)
Northeast 0.9x 0.77 x 0.86 x 41.38 x 0.63 x 0.7 =	10.88 (75)
Northeast 0.9x 0.77 x 1.48 x 41.38 x 0.63 x 0.7 =	18.72 (75)
Northeast 0.9x 0.77 x 1.4 x 41.38 x 0.63 x 0.7 =	17.7 (75)
Northeast 0.9x 0.77 x 0.86 x 67.96 x 0.63 x 0.7 =	17.86 (75)
Northeast 0.9x 0.77 x 1.48 x 67.96 x 0.63 x 0.7 =	30.74 (75)
Northeast 0.9x 0.77 x 1.4 x 67.96 x 0.63 x 0.7 =	29.08 (75)
Northeast 0.9x 0.77 x 0.86 x 91.35 x 0.63 x 0.7 =	24.01 (75)
Northeast 0.9x 0.77 x 1.48 x 91.35 x 0.63 x 0.7 =	41.32 (75)
Northeast 0.9x 0.77 x 1.4 x 91.35 x 0.63 x 0.7 =	39.08 (75)
Northeast 0.9x 0.77 x 0.86 x 97.38 x 0.63 x 0.7 =	25.6 (75)
Northeast 0.9x 0.77 x 1.48 x 97.38 x 0.63 x 0.77 =	44.05 (75)
Northeast 0.9x 0.77 x 1.4 x 97.38 x 0.63 x 0.7 =	41.67 (75)
Northeast 0.9x 0.77 x 0.86 x 91.1 x 0.63 x 0.7 =	23.94 (75)
Northeast 0.9x 0.77 x 1.48 x 91.1 x 0.63 x 0.7 =	41.21 (75)
Northeast 0.9x 0.77 x 1.4 x 91.1 x 0.63 x 0.7 =	38.98 (75)
Northeast 0.9x 0.77 x 0.86 x 72.63 x 0.63 x 0.77 =	19.09 (75)
Northeast 0.9x 0.77 x 1.48 x 72.63 x 0.63 x 0.77 =	32.85 (75)
Northeast 0.9x 0.77 x 1.4 x 72.63 x 0.63 x 0.7 =	31.07 (75)
Northeast 0.9x 0.77 x 0.86 x 50.42 x 0.63 x 0.7 =	13.25 (75)
Northeast 0.9x 0.77 x 1.48 x 50.42 x 0.63 x 0.7 =	22.81 (75)
Northeast 0.9x 0.77 x 1.4 x 50.42 x 0.63 x 0.7 =	21.57 (75)
Northeast 0.9x 0.77 x 0.86 x 28.07 x 0.63 x 0.77 =	7.38 (75)
Northeast 0.9x 0.77 x 1.48 x 28.07 x 0.63 x 0.7 =	12.69 (75)
Northeast 0.9x 0.77 x 1.4 x 28.07 x 0.63 x 0.7 =	12.01 (75)
Northeast 0.9x 0.77 x 0.86 x 14.2 x 0.63 x 0.7 =	3.73 (75)
Northeast 0.9x 0.77 x 1.48 x 14.2 x 0.63 x 0.7 =	6.42 (75)
Northeast 0.9x 0.77 x 1.4 x 14.2 x 0.63 x 0.7 =	6.07 (75)
Northeast 0.9x 0.77 x 0.86 x 9.21 x 0.63 x 0.7 =	2.42 (75)

Northeast _{0.9x}		٦		1		1		١		1		7(75)
Northeast 0.9x	0.77	X	1.48	X	9.21	X	0.63	X	0.7] = 1	4.17	(75)
<u> </u>	0.77	X	1.4	X	9.21	X	0.63	X	0.7] = 1	3.94	(75)
Southeast 0.9x	0.77	X	0.5	X	36.79	X	0.63	X	0.7] = 1	5.62	(77)
Southeast 0.9x	0.77	X	0.5	X	36.79	X	0.63	X	0.7] =	5.62	(77)
Southeast 0.9x	0.77	X	0.5	X	62.67	X	0.63	X	0.7	=	9.58	(77)
Southeast 0.9x	0.77	X	0.5	X	62.67	X	0.63	X	0.7	=	9.58	(77)
Southeast 0.9x	0.77	X	0.5	X	85.75	X	0.63	X	0.7	=	13.1	(77)
Southeast 0.9x	0.77	X	0.5	X	85.75	X	0.63	X	0.7	=	13.1	(77)
Southeast 0.9x	0.77	X	0.5	X	106.25	X	0.63	X	0.7] =	16.24	(77)
Southeast 0.9x	0.77	X	0.5	X	106.25	X	0.63	X	0.7	=	16.24	(77)
Southeast 0.9x	0.77	X	0.5	X	119.01	X	0.63	X	0.7	=	18.19	(77)
Southeast 0.9x	0.77	X	0.5	X	119.01	Х	0.63	X	0.7	=	18.19	(77)
Southeast 0.9x	0.77	X	0.5	X	118.15	X	0.63	X	0.7	=	18.05	(77)
Southeast 0.9x	0.77	X	0.5	X	118.15	X	0.63	X	0.7	=	18.05	(77)
Southeast _{0.9x}	0.77	X	0.5	X	113.91	X	0.63	X	0.7	=	17.41	(77)
Southeast 0.9x	0.77	X	0.5	X	113.91	X	0.63	X	0.7	=	17.41	(77)
Southeast 0.9x	0.77	X	0.5	X	104.39	X	0.63	X	0.7	=	15.95	(77)
Southeast 0.9x	0.77	X	0.5	X	104.39	x	0.63	X	0.7	=	15.95	(77)
Southeast 0.9x	0.77	X	0.5	X	92.85	X	0.63	X	0.7	=	14.19	(77)
Southeast 0.9x	0.77	X	0.5	X	92.85	X	0.63	X	0.7	=	14.19	(77)
Southeast 0.9x	0.77	X	0.5	X	69.27	X	0.63	X	0.7	=	10.58	(77)
Southeast 0.9x	0.77	x	0.5	x	69.27	x	0.63	x	0.7	=	10.58	(77)
Southeast 0.9x	0.77	x	0.5	X	44.07	x	0.63	x	0.7	=	6.73	(77)
Southeast 0.9x	0.77	x	0.5	x	44.07	x	0.63	x	0.7	=	6.73	(77)
Southeast 0.9x	0.77	x	0.5	X	31.49	X	0.63	X	0.7	=	4.81	(77)
Southeast 0.9x	0.77	x	0.5	x	31.49	x	0.63	x	0.7	=	4.81	(77)
Southwest _{0.9x}	0.77	x	1.35	x	36.79]	0.63	x	0.7	=	15.18	(79)
Southwest _{0.9x}	0.77	X	3.33	x	36.79		0.63	x	0.7	=	37.44	(79)
Southwest _{0.9x}	0.77	x	0.99	x	36.79		0.63	x	0.7	=	11.13	(79)
Southwest _{0.9x}	0.77	x	1.46	x	36.79]	0.63	x	0.7] =	16.42	(79)
Southwest _{0.9x}	0.77	x	1.35	x	62.67	Ì	0.63	x	0.7	=	25.86	(79)
Southwest _{0.9x}	0.77	x	3.33	x	62.67	ĺ	0.63	x	0.7] =	63.78	(79)
Southwest _{0.9x}	0.77	x	0.99	x	62.67	ĺ	0.63	x	0.7	=	18.96	(79)
Southwest _{0.9x}	0.77	x	1.46	x	62.67	Ì	0.63	x	0.7	=	27.96	(79)
Southwest _{0.9x}	0.77	x	1.35	x	85.75	ĺ	0.63	х	0.7	j =	35.38	(79)
Southwest _{0.9x}	0.77	j×	3.33	x	85.75	ĺ	0.63	x	0.7	j =	87.27	(79)
Southwest _{0.9x}	0.77	j ×	0.99	x	85.75	ĺ	0.63	x	0.7	j =	25.95	(79)
Southwest _{0.9x}	0.77	x	1.46	x	85.75	ĺ	0.63	x	0.7	j =	38.26	(79)
Southwest _{0.9x}	0.77	j ×	1.35	×	106.25	i	0.63	x	0.7	j =	43.84	(79)
Southwest _{0.9x}	0.77	x	3.33	×	106.25	j	0.63	x	0.7	j =	108.13	(79)
Southwest _{0.9x}	0.77	X	0.99	X	106.25	ĺ	0.63	x	0.7	=	32.15	(79)
L		_		1		1		l				

Jan	Feb	Mar	Apr	May	T	Jun	Jul	Au	g Sep		Oct	Nov	De	С		
Temperature Utilisation fac	_	• .			_			oie 9,	in1 (°C)						21	(85)
7. Mean inter			_			oro- 1	rom T-1	ole C	Th4 (90)							7(05)
(84)m= 760.47		887.16	931.2	951.49		22.44	885.28	849.7	76 817.47	77	70.82	733.81	728.1	19		(84)
Total gains – ir	nternal an	nd solar	(84)m =	(73)m	+ (8	83)m	, watts								•	
(83)m= 104.32		260.36	341.67	400.11	_	04.87	387.15	342.3			04.19	125.73	88.7	7		(83)
Solar gains in	watts, cal	culated	for each	n mont	h			(83)m	= Sum(74)m	n(8	2)m					
Souriwest0.9x	0.77	Х	1.46	b	X	3	1.49	J L	0.63		x	0.7		=	14.05	(79)
Southwest _{0.9x}	0.77	_ X	0.99		X		1.49	l L	0.63	\dashv	х [[0.7	=	=	9.53	(79)
Southwest _{0.9x} Southwest _{0.9x}	0.77	X	3.33		X		1.49]	0.63	_	X	0.7	=	=	32.04	(79)
Southwesto a	0.77	×	1.35		X		1.49		0.63		X	0.7	=	=	12.99	(79)
Southwest _{0.9x}	0.77	X	1.46	6	X	4	4.07	ļ Ļ	0.63		X	0.7	_	=	19.66	(79)
Southwest _{0.9x}	0.77	X	0.99	9	X	4	4.07	[0.63	_	X	0.7	_	=	13.33	(79)
Southwest _{0.9x}	0.77	X	3.33	3	X	4	4.07	<u> </u>	0.63		x	0.7		=	44.85	(79)
Southwest _{0.9x}	0.77	x	1.3	5	X	4	4.07] [0.63		x	0.7		=	18.18	(79)
Southwest _{0.9x}	0.77	X	1.46	6	X	6	9.27		0.63		x	0.7		=	30.91	(79)
Southwest _{0.9x}	0.77	X	0.99	9	X	6	9.27		0.63		x	0.7		=	20.96	(79)
Southwest _{0.9x}	0.77	x	3.33	3	X	6	9.27		0.63		x	0.7		=	70.49	(79)
Southwest _{0.9x}	0.77	X	1.3	5	X	6	9.27		0.63		x	0.7		=	28.58	(79)
Southwest _{0.9x}	0.77	x	1.46	6	X	9	2.85		0.63		x	0.7		=	41.43	(79)
Southwest _{0.9x}	0.77	x	0.99	9	X	9	2.85	Ĺ	0.63		x	0.7		=	28.09	(79)
Southwest _{0.9x}	0.77	x	3.33	3	x	9	2.85	j †	0.63		x [0.7		=	94.49	(79)
Southwest _{0.9x}	0.77	×	1.35		x		2.85		0.63	司	x	0.7	_	=	38.31	(79)
Southwest _{0.9x}	0.77	x	1.46		X		04.39		0.63		x [0.7	=	_	46.58	(79)
Southwest _{0.9x}	0.77	x	0.99		X		04.39	, L	0.63	一	x [0.7	\dashv	=	31.58	(79)
Southwest _{0.9x}	0.77	x	3.33		X		04.39		0.63		x [0.7	=	_	106.24	(79)
Southwest _{0.9x}	0.77	×	1.39		X		04.39	, L [0.63		^ L	0.7	=	_	43.07	(79)
Southwest _{0.9x}	0.77	$=$ $\stackrel{\wedge}{}$	1.46		X		13.91	J L I Г	0.63		^ L _x [0.7	=	_	50.83	(79)
Southwest _{0.9x}	0.77	X x	0.99		x x		13.91	J L I Г	0.63	+	x [0.7	=	=	115.92 34.46	(79) (79)
Southwest _{0.9x} Southwest _{0.9x}	0.77	X	1.3		X		13.91	l I r	0.63	_	х [., [0.7	=	=	47	(79)
Southwesto a	0.77	×	1.46		X		18.15		0.63	_	X	0.7	=	=	52.72	(79)
Southwesto.9x	0.77	X	0.99		X		18.15		0.63	4	X	0.7	_	=	35.75	(79)
Southwest _{0.9x}	0.77	x	3.33	3	X		18.15		0.63		X	0.7	_	=	120.24	<u> </u> (79)
Southwest _{0.9x}	0.77	X	1.3	5	X	1	18.15	ַ וְ	0.63	_	X	0.7	_	=	48.75	(79)
Southwest _{0.9x}	0.77	X	1.46	6	X	1	19.01	ַ וְ	0.63	_	X	0.7	_	=	53.1	(79)
Southwest _{0.9x}	0.77	X	0.99	9	X	1	19.01	ַ וַ	0.63		x	0.7	_	=	36.01	(79)
Southwest _{0.9x}	0.77	X	3.33	3	X	1	19.01	<u> </u>	0.63		X	0.7		=	121.12	(79)
Southwest _{0.9x}	0.77	X	1.3	5	X	1	19.01		0.63		х	0.7		=	49.1	(79)
<u> </u>	0.77							: =			- :			=	47.41	┛`′

(86)m=	0.93	0.91	0.88	0.82	0.73	0.59	0.46	0.49	0.67	0.83	0.91	0.94		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	19.05	19.28	19.64	20.11	20.52	20.81	20.93	20.92	20.72	20.2	19.56	19.01		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)					
(88)m=	20	20.01	20.01	20.02	20.02	20.03	20.03	20.03	20.03	20.02	20.02	20.01		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	ee Table	9a)	-					
(89)m=	0.93	0.9	0.86	0.79	0.68	0.52	0.37	0.4	0.61	0.8	0.9	0.93		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)			•	
(90)m=	17.42	17.74	18.26	18.92	19.48	19.86	19.98	19.97	19.75	19.07	18.16	17.36		(90)
									f	LA = Livin	g area ÷ (4) =	0.17	(91)
Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 – fLA) × T2														
(92)m=	17.7	18.01	18.5	19.13	19.66	20.02	20.15	20.13	19.92	19.27	18.4	17.65		(92)
Apply	adjustr	nent to t	he mear	interna	temper	ature fro	m Table	4e, whe	re appro	priate				
(93)m=	17.55	17.86	18.35	18.98	19.51	19.87	20	19.98	19.77	19.12	18.25	17.5		(93)
8. Sp	ace hea	ting requ	uirement											
	Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a													
tne u		l e			l	lup	lul	Λιια	Son	Oct	Nov	Doo		
l Itilis:	Jan ation fac	Feb tor for g	Mar ains hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.9	0.87	0.83	0.76	0.66	0.51	0.36	0.4	0.59	0.77	0.86	0.9		(94)
	∟——ıl gains,	hmGm .	W = (94	L 4)m x (8	L 4)m		<u> </u>	<u> </u>			ļ.	ļ		
(95)m=	680.73	724.88	736.77	709.65	626.23	470.08	323.02	336.56	480.82	592.58	633.47	657.88		(95)
Montl	nly aver	age exte	rnal tem	perature	from Ta	able 8							l	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
		1324.79	1208.73	ļ	ļ	525.18	338.48	356.46	566.52	857.16	1126.87	1349.57		(97)
•		ĭ 	i	i	· ·	1	r	24 x [(97	``	^ - `	r´ 		l	
(98)m=	503.93	403.13	351.14	220.83	118.87	0	0	0	0	196.85	355.25	514.62		٦,,,,,,
								Tota	l per year	(kWh/yeai	r) = Sum(9	8) _{15,912} =	2664.62	(98)
Spac	e heatin	g require	ement in	kWh/m²	² /year								28.5	(99)
9a. En	ergy red	quiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
•	e heatir	_			/l-							ĺ		٦,,,,,,
	_					mentary	system		(224)				0	(201)
	-			nain syst	` '			(202) = 1	- (201) =				1	(202)
Fract	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Efficie	ency of	main spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ency of	seconda	ry/suppl	ementar	y heatin	g system	າ, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Spac	e heatin	g require	ement (c	alculate	d above))							•	
	503.93	403.13	351.14	220.83	118.87	0	0	0	0	196.85	355.25	514.62		
(211)m	n = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)								1	(211)
	540.7	432.55	376.76	236.94	127.54	0	0	0	0	211.21	381.17	552.17		_
								Tota	I (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	2859.04	(211)

Stater heating	0 0 147.65 141.5 80.1 80.1	155.68 15	0 0 Wh/year) =Sum(3 55.53 175.46	0 215),5,1012	199.58	0	(215
utput from water heater (calculated above) 204.61	L			185.92	199.58		_
204.61 180.25 189.08 169.2 165.59 ficiency of water heater 17)m= 87.43 87.2 86.74 85.83 84.25 uel for water heating, kWh/month 19)m = (64)m x 100 ÷ (217)m	L			185.92	199.58		
ficiency of water heater 17)m= 87.43 87.2 86.74 85.83 84.25 uel for water heating, kWh/month 19)m = (64)m x 100 ÷ (217)m	L			185.92	199.58		
17)m= 87.43 87.2 86.74 85.83 84.25 uel for water heating, kWh/month 19)m = (64)m x 100 ÷ (217)m	80.1 80.1	80.1 8				80.1	(216
uel for water heating, kWh/month 19)m = (64)m x 100 ÷ (217)m			30.1 85.42	86.82	87.53	60.1	(217 (217
19)m = (64)m x 100 ÷ (217)m						I	•
19)m= 234.03 206.71 217.98 197.14 196.55	404.00 470.05	1 404 00 1 40	24.42 225.44	T 04.4.5	000.04	l	
	184.33 176.65		94.18 205.41 Sum(219a) ₁₁₂ =	214.15	228.01	2449.48	7,240
nnual totals		rotal = c		Wh/year		kWh/year	(219
pace heating fuel used, main system 1				, J Gu.		2859.04	7
ater heating fuel used						2449.48	Ī
ectricity for pumps, fans and electric keep-ho	t						_
central heating pump:					30		(230
poiler with a fan-assisted flue					45		(230
otal electricity for the above, kWh/year	75	(231					
ectricity for lighting	423.4	 ☐(232					
ectricity generated by PVs						-1606.39	 ☐(233
otal delivered energy for all uses (211)(221)	+ (231) + (232).	(237b) =				4200.53	(338
0a. Fuel costs - individual heating systems:	, , ,						
,	Fuel		Fuel F	rice		Fuel Cost	
	kWh/year		(Table			£/year	
pace heating - main system 1	(211) x		3.4	18	x 0.01 =	99.49	(240
pace heating - main system 2	(213) x				x 0.01 =	0	(241
pace heating - secondary	(215) x		13.	19	x 0.01 =	0	_ (242)
ater heating cost (other fuel)	(219)		3.4	18	x 0.01 =	85.24	 (247
umps, fans and electric keep-hot	(231)		13.	19	x 0.01 =	9.89	」 【(249
off-peak tariff, list each of (230a) to (230g) se	eparately as app	olicable and			rding to T	 Table 12a	
nergy for lighting	(232)		13.		x 0.01 =	55.85	(250
dditional standing charges (Table 12)						120	(251
	one of (233) to	to (235) x)	13.	19	x 0.01 =	-211.88	_ (252
opendix Q items: repeat lines (253) and (254)	as needed						٠, ١
	(247) + (250)(254)) =				158.59	(255
1a. SAP rating - individual heating systems							

Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		0.48 (257)
SAP rating (Section 12)			93.29 (258)
12a. CO2 emissions – Individual heating system	s including micro-C	HP	
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	617.55 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216	529.09 (264)
Space and water heating	(261) + (262) + (263)	+ (264) =	1146.64 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	219.74 (268)
Energy saving/generation technologies Item 1		0.519 =	-833.72 (269)
Total CO2, kg/year		sum of (265)(271) =	571.59 (272)
CO2 emissions per m ²		(272) ÷ (4) =	6.11 (273)
EI rating (section 14)			94 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	3488.02 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22	2988.37 (264)
Space and water heating	(261) + (262) + (263)	+ (264) =	6476.39 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1299.84 (268)
Energy saving/generation technologies Item 1		3.07	-4931.63 (269)
'Total Primary Energy		sum of (265)(271) =	3074.85 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	32.89 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 39

Dwelling type: Semi-detached House

Located in:EnglandRegion:East AngliaCross ventilation possible:Yes

Cross ventilation possible: Ye Number of storeys: 2

Front of dwelling faces: North East

Overshading: Average or unknown

None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 296.14 (P1)

Transmission heat loss coefficient: 5

Summer heat loss coefficient: 355.19 (P2)

Overhangs:

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South West (W_97)	0	1
North East (W_98)	0	1
North East (W_99)	0	1
North East (W_100)	0	1
South West (W_101)	0	1
South West (W_102)	0	1
South East (W_103)	0	1
South East (W_104)	0	1
South West (W_105)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South West (W_97)	0.85	0.9	1	0.76	(P8)
North East (W_98)	0.85	0.9	1	0.76	(P8)
North East (W_99)	0.85	0.9	1	0.76	(P8)
North East (W_100)	0.85	0.9	1	0.76	(P8)
South West (W_101)	0.85	0.9	1	0.76	(P8)
South West (W_102)	0.85	0.9	1	0.76	(P8)
South East (W_103)	0.85	0.9	1	0.76	(P8)
South East (W_104)	0.85	0.9	1	0.76	(P8)
South West (W_105)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
South West (W_97)	0.9 x	1.35	122.31	0.63	0.7	0.76	50.14
North East (W_98)	0.9 x	0.86	100.04	0.63	0.7	0.76	26.12
North East (W_99)	0.9 x	1.48	100.04	0.63	0.7	0.76	44.96
North East (W_100)	0.9 x	1.4	100.04	0.63	0.7	0.76	42.53
South West (W_101)	0.9 x	3.33	122.31	0.63	0.7	0.76	123.67
South West (W_102)	0.9 x	0.99	122.31	0.63	0.7	0.76	36.77

SAP 2012 Overheating Assessment

South East (W_103) South East (W_104) South West (W_105)	0.9 x 0.9 x 0.9 x	0.5 0.5 1.46	122.31 122.31 122.31	0.63 0.63 0.63	0.7 0.7 0.7	0.76 0.76 0.76 Total	18.57 18.57 54.22 415.54	(P3/P4)
Internal gains:								
				Ju	ne	July	August	
Internal gains				514	1.57	495.13	504.37	
Total summer gains				953	3.61	910.67	874.08	(P5)
Summer gain/loss ration)			2.6	8	2.56	2.46	(P6)
Mean summer externa		iture (Eas	t Anglia)	15.	4	17.6	17.6	
Thermal mass tempera	ature incr	ement	0 ,	1.3		1.3	1.3	
Threshold temperature	;			19.	38	21.46	21.36	(P7)
Likelihood of high int	nperature	:	No	t significant	Slight	Slight		

Slight

Assessment of likelihood of high internal temperature: