Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 *Printed on 29 November 2022 at 15:06:39*

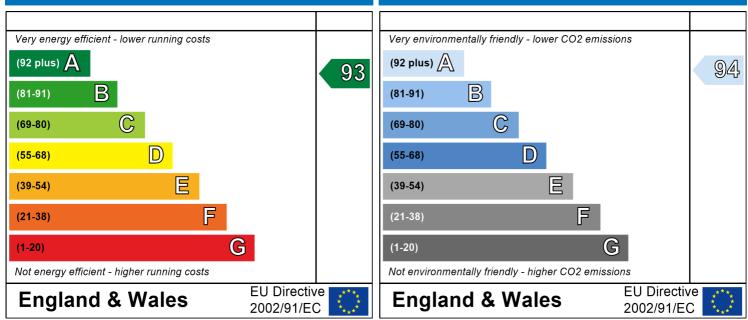
Project Information	<i>ember 2022 at 15:0</i> on:			
Assessed By:	Liam Mason (STI	RO033679)	Building Type:	Semi-detached House
Dwelling Details:				
NEW DWELLING			Total Floor Area: 9	
Site Reference :	Bell Road, Bottisl	nam	Plot Reference:	Plot 40
Address :	Plot 40			
Client Details:				
Name:				
Address :				
This report cover	rs items included v	vithin the SAP calculations.		
It is not a comple	ete report of regula	tions compliance.		
1a TER and DEF				
	ting system: Mains o	jas		
Fuel factor: 1.00 (I	mains gas) oxide Emission Rate		16.56 kg/m²	
-	Dioxide Emission Rate		7.36 kg/m ²	ОК
1b TFEE and DF			100 10,111	
Target Fabric Ene	rgy Efficiency (TFE	Ξ)	46.9 kWh/m ²	
Dwelling Fabric Er	nergy Efficiency (DF	EE)	42.2 kWh/m ²	
				OK
2 Fabric U-value		•		
Element External		Average 0.19 (max. 0.30)	Highest 0.19 (max. 0.70)	ок
Party wa		0.00 (max. 0.20)	-	OK
Floor		0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof		0.11 (max. 0.20)	0.11 (max. 0.35)	ОК
Openings	S	1.37 (max. 2.00)	1.40 (max. 3.30)	OK
2a Thermal brid	ging			
		from linear thermal transmittan	ces for each junction	
3 Air permeabili				,
Air permeal Maximum	bility at 50 pascals		5.00 (design val 10.0	ue) OK
			10.0	UN
4 Heating efficie		Detabases (roy E09, produc	t index 019402)	
Main Heatir	ng system:	Database: (rev 508, produc	rs or underfloor heating - ma	
		Brand name: Vaillant	s of undernoor nearing - ma	ans yas
		Model: ecoFIT sustain 615		
		Model qualifier: VU 156/6-3	(H-GB)	
		(Regular)		
		Efficiency 89.8 % SEDBUK	2009	01/
		Minimum 88.0 %		OK
Secondarv	heating system:	None		
j				

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1		
	Permitted by DBSCG: 2.3	0 kWh/day	OK
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing and ele	ectrical services	ОК
Hot water controls:	Cylinderstat		ок
	Independent timer for DH	W	ОК
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (East Anglia):		Slight	ок
Based on:		U U	
Overshading:		Average or unknown	
Windows facing: South West		1.35m ²	
Windows facing: North East		0.86m ²	
Windows facing: North East		1.48m ²	
Windows facing: North East		1.4m ²	
Windows facing: South West		3.33m ²	
Windows facing: South West		0.99m ²	
Windows facing: North West		0.5m ²	
Windows facing: North West		0.5m ²	
Windows facing: South West		1.46m ²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key features			
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	

Photovoltaic array

Plot 40


Dwelling type: Date of assessment: Produced by: Total floor area: Semi-detached House 03 November 2022 Liam Mason 93.48 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details:	Plot 40								
Address:		Plot 40							
Located in:		England							
Region:		East Anglia							
UPRN:		Last Fulgila							
Date of assessr	mont	03 November 2022							
		29 November 2022							
Date of certific		New dwelling design stage							
Assessment typ									
Transaction typ	be:	New dwelling							
Tenure type:		Unknown							
Related party c		No related party							
Thermal Mass F		Indicative Value Low							
	125 litres/person/d								
PCDF Version:		508							
Property descripti	on:								
Dwelling type:		House							
Detachment:		Semi-detached							
Year Completed:		2022							
•									
Floor Location:		Floor area:							
			St	torey height	:				
Floor 0		46.74 m²		2.4 m					
Floor 1		46.74 m²		2.4 m					
		16.24 m ² (fraction 0.174)							
Living area: Front of dwelling	faces:	North East							
Opening types:									
Name:	Source:	Type:	Glazing:		Argon:	Frame:			
D_12	Manufacturer	Solid							
W_97	Manufacturer	Windows	low-E, En = C	0.05, soft coat	Yes				
W_98	Manufacturer	Windows	low-E, En = C	0.05, soft coat	Yes				
W_99	Manufacturer	Windows	low-E, En = C	0.05, soft coat	Yes				
W_100	Manufacturer	Windows	low-E, En = C	0.05, soft coat	Yes				
W_101	Manufacturer	Windows	low-E, En = C	.05, soft coat	Yes				
	Manufacturer	Windows		0.05, soft coat	Yes				
W_103	Manufacturer	Windows	low-E, En = C		Yes				
W_104	Manufacturer	Windows	low-E, En = C		Yes				
W_104 W_105	Manufacturer	Windows	low-E, En = C		Yes				
vv_100		VVIII IUUVVS	10 W - L, LII = U	, son coal	163				
Name:	Gap:	Frame Factor:	-	U-value:	Area:	No. of Openings:			
D_12	mm	0	0	1.2	2.03	1			
W_97	16mm or more	0.7	0.63	1.4	1.35	1			
W_98	16mm or more	0.7	0.63	1.4	0.86	1			
W_99	16mm or more	0.7	0.63	1.4	1.48	1			
W_100	16mm or more	0.7	0.63	1.4	1.4	1			
W_101	16mm or more	0.7	0.63	1.4	3.33	1			
W_102	16mm or more	0.7	0.63	1.4	0.99	1			
W_103	16mm or more	0.7	0.63	1.4	0.5	1			
	16mm or more	0.7	0.63	1.4	0.5	1			
	16mm or more	0.7	0.63	1.4	1.46	1			
Name:	Type-Name:	Location:	Orient:		Width:	Height:			
D_12	Doors	Wall 1	North East		2.03	1			
W_97	Windows	Wall 1	South West		1.35	1			
W_98	Windows	Wall 1	North East		0.86	1			
W_99	Windows	Wall 1	North East		1.48	1			
W_100	Windows	Wall 1	North East		1.4	1			

SAP Input

W_101	Windows	Wall 1	South West	3.33	1
W_102	Windows	Wall 1	South West	0.99	1
W_103	Windows	Wall 1	North West	0.5	1
W_104	Windows	Wall 1	North West	0.5	1
W_105	Windows	Wall 1	South West	1.46	1

Overshading:		Average	e or unknown				
Opaque Elements	5:						
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elemen Wall 1	<u>ts</u> 99.4	13.9	85.5	0.19	0	False	N/A
Roof 1	46.74	0	46.74	0.13	0	1 0130	N/A
Floor 1	46.74			0.11			N/A
Internal Element	46.74						N/A
<u>Party Elements</u> Party Wall	43.5						N/A

Thermal bridges:

Thermal bridges:

lsor_dofinor	I (individual PSI	-values)	Y-Value = 0.0744
Length	Psi-value	-values)	1-Value - 0.0744
10.51	0.3	E2	Other lintels (including other steel lintels)
7.89	0.04	E3	Sill
25.3	0.05	E4	Jamb
19.49	0.16	E5	Ground floor (normal)
19.49	0.07	E6	Intermediate floor within a dwelling
10.96	0.06	E10	Eaves (insulation at ceiling level)
10.43	0.24	E12	Gable (insulation at ceiling level)
10.2	0.09	E16	Corner (normal)
10.2	0.06	E18	Party wall between dwellings
C	0.3	E2	
C	0.04	E3	
C	0.05	E4	
C	0.16	E5	
C	0.07	E6	
C	0.06	E10	
C	0.24	E12	
C	0.09	E16	
C	-0.09	E17	
C	0.06	E18	
8.53	0	P2	Intermediate floor within a dwelling
C	0.16	P1	Ground floor
C	0.16	P1	
C	0	P2	
5.48	0.08	R4	Ridge (vaulted ceiling)
C	0.08	R4	

Ventilation:

Pressure test:	Yes (As designed)
Ventilation:	Natural ventilation (extract fans)
Number of chimneys:	0
Number of open flues:	0
Number of fans:	3
Number of passive stacks:	0
Number of sides sheltered:	2

SAP Input

Pressure test:	5
Main heating system:	
Main heating system:	Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Boiler Database Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8 Brand name: Vaillant Model: ecoFIT sustain 615 Model qualifier: VU 156/6-3 (H-GB) (Regular boiler) Systems with radiators Central heating pump : 2013 or later Design flow temperature: Design flow temperature<=45°C Unknown Boiler interlock: Yes Delayed start
Main heating Control:	
Main heating Control:	Time and temperature zone control by suitable arrangement of plumbing and electrical services Control code: 2110
Secondary heating system:	
Secondary heating system: Water heating:	None
Water heating:	From main heating system Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres Cylinder insulation: Measured loss, 1.32kWh/day Primary pipework insulation: True Cylinderstat: True Cylinder in heated space: True Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics:	Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No <u>Photovoltaic 1</u> Installed Peak power: 2 Tilt of collector: 45° Overshading: None or very little Collector Orientation: South West
Assess Zero Carbon Home:	No

					User [Details:									
Assessor Name: Software Name:	Software Name: Stroma FSAP 2012								Stroma Number:STRCSoftware Version:Versionperty Address: Plot 40						
A daha a a	Die	+ 40		PI	operty	Address	: Piot 40								
Address : 1. Overall dwelling dir	-	t 40													
T. Overall dwelling di	nension	5.			Aro	a(m²)		Av. Hei	iaht(m)		Volume(m ³)				
Ground floor							(1a) x		.4	(2a) =	112.18	(3a)			
First floor						46.74	(10) x		2.4	(2b) =	112.18](3b)			
Total floor area TFA =	(1a)+(1l	o)+(1c)+	(1d)+(1e	e)+(1n	、	93.48	(4)]`´					
Dwelling volume)+(3c)+(3d)+(3e)+	.(3n) =	224.35	(5)			
2. Ventilation rate:												_			
		main heating		econdary neating	y	other		total			m ³ per hour				
Number of chimneys	E	0	+	0] + [0] = [0	X 4	40 =	0	(6a)			
Number of open flues		0] + [0] + [0] = [0	x 2	20 =	0	(6b)			
Number of intermittent	fans							3	x ^	10 =	30	(7a)			
Number of passive ver	nts							0	× ′	10 =	0	(7b)			
Number of flueless gas	s fires							0	x 4	40 =	0	(7c)			
										Air ch	anges per ho	ur			
Infiltration due to chim	neys, flu	es and fa	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Г	30	<u> </u>	÷ (5) =	0.13	(8)			
If a pressurisation test ha	s been ca	rried out o	r is intende	ed, proceed	l to (17),	otherwise of	continue fr								
Number of storeys ir	n the dw	elling (ne	5)								0	(9)			
Additional infiltration									[(9)	-1]x0.1 =	0	(10)			
Structural infiltration	0.25 fo	r steel oi	timber t	frame or	0.35 fo	r masoni	ry constr	uction			0	(11)			
if both types of wall are deducting areas of ope				ponding to	the grea	ter wall are	a (after								
If suspended woode	n floor, e	enter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)			
If no draught lobby,	enter 0.0	05, else e	enter 0								0	(13)			
Percentage of windo	ws and	doors dr	aught st	ripped							0	(14)			
Window infiltration						0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)			
Infiltration rate						(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)			
Air permeability valu		•			•	•	•	etre of e	nvelope	area	5	(17)			
If based on air permea	-										0.38	(18)			
Air permeability value ap		ressurisatio	on test has	s been don	e or a de	gree air pe	rmeability	is being us	sed			٦			
Number of sides shelte Shelter factor	ered					(20) = 1 -	[0.075 x (1	9)1 =			2	(19)			
Infiltration rate incorpo	ratina et	naltar fac	tor			(21) = (18					0.85	(20)			
Infiltration rate modifie	-			4		() - (10	, , (20) -				0.33	(21)			
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec					
Monthly average wind		i i				I , ag					l				
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7					
		I				1									

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjust	ed infiltra	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.42	0.41	0.4	0.36	0.35	0.31	0.31	0.3	0.33	0.35	0.37	0.38		
			-	rate for t	he appli	cable ca	se				<u>.</u>		[
		al ventila		endix N, (2	(26) - (22c)		austion (N	IE)) othou	wice (22b) = (22a)			0	(23a)
				endix N, (2) = (23a)			0	(23b)
			-	-	-					2b)m + (23b) x [1	1 – (23c)	0 	(23c)
(24a)m=		0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	covery (N	/IV) (24b)m = (22	2b)m + (23b)			
(24b)m=		0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	e input v	ventilatio	n from c	outside		!			
i	if (22b)n	n < 0.5 ×	(23b), t	then (240	c) = (23b); other	wise (24	c) = (22b) m + 0.	5 × (23b	p)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous						0 51				
(24d)m=	<u>, ,</u>	n = 1, the 0.58	en (240) 0.58	m = (221 0.56	0.56	0.55	(40)m = 0	0.55 + [(2 0.55	2D)m ² X	0.5]	0.57	0.57		(24d)
				nter (24a						0.00	0.57	0.57		(210)
(25)m=	0.59	0.58	0.58	0.56	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(25)
0.11.					I		I			I	1	I		
		s and ne Gros		paramete		Net Ar	~~	U-valı		AXU		k-value		AXk
ELEN		area		Openin m	-	A,r		W/m2		A X U (W/		kJ/m²·ł		kJ/K
Doors														(26)
\\ <i>\\</i> :						2.03	×	1.2	=	2.436				
vvindo	ws Type	e 1				2.03 1.35		1.2 [1/(1.4)+	י	2.436 1.79				(27)
	ws Type ws Type						x1/		0.04] =					(27) (27)
Windo		2				1.35	x1/	[1/(1.4)+	0.04] = [0.04] = [1.79				
Windo [.] Windo [.]	ws Type	e 2 e 3				1.35 0.86	x1/ x1/ x1/	′[1/(1.4)+ ′[1/(1.4)+	0.04] = [0.04] = [0.04] = [1.79 1.14				(27)
Windo [,] Windo [,] Windo [,]	ws Type ws Type	e 2 e 3 e 4				1.35 0.86 1.48	x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ [1/(1.4)+ [1/(1.4)+	$0.04] = \begin{bmatrix} 0.04] \\ 0.04] = \begin{bmatrix} 0.04] \\ 0.04] = \begin{bmatrix} 0.04] \\ 0.04\end{bmatrix} = \begin{bmatrix} 0.04] \\ 0.04\end{bmatrix}$	1.79 1.14 1.96				(27) (27)
Windo Windo Windo Windo	ws Type ws Type ws Type	e 2 e 3 e 4 e 5				1.35 0.86 1.48 1.4	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+	$\begin{array}{l} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86				(27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type	2 2 3 2 4 2 5 2 6				1.35 0.86 1.48 1.4 3.33	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86 4.41				(27) (27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type	2 2 3 4 5 5 6 7				1.35 0.86 1.48 1.4 3.33 0.99	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31				(27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type	2 2 3 4 5 5 6 7 8 8				1.35 0.86 1.48 1.4 3.33 0.99 0.5	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+ [1/(1.4)+	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66				 (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 2 3 4 5 5 6 7 8 8				1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ (1/(1.4))+ (1/(1.4)+ (1/	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66				 (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 2 3 4 5 5 6 7 8 8	4	13.9		1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	[1/(1.4)+ (1/($\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94				(27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo Floor	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 3 4 5 6 7 8 9		<u>13.9</u> 0	9	1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	$[1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\]]$	$\begin{array}{c} 0.04] = \begin{bmatrix} \\ 0.04] = \end{bmatrix} \begin{bmatrix} 0.04] = 0 \\ \end{bmatrix} \begin{bmatrix} 0.0$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414				(27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo Floor Walls Roof	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 3 4 5 6 7 8 9 <u>99.</u>	'4			1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74 85.5	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	$[1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ 0.11 \\ 0.19 \\]]$	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ 0.04] = \\ \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				(27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo Floor Walls Roof	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 3 4 5 6 7 8 9 <u>99</u> .4 46.7	'4			1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74 85.5 46.74	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	$[1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ 0.11 \\ 0.19 \\]]$	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ 0.04] = \\ \\ \end{array}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				(27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo Floor Walls Roof Total a	ws Type ws Type ws Type ws Type ws Type ws Type ws Type ws Type	2 3 4 5 6 7 8 9 <u>99</u> .4 46.7	'4			1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 1.46 46.74 192.8	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	$[1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ [1/(1.4)+ \\ 0.11 \\ 0.19 \\ 0.11 \\]]$	$\begin{array}{c} 0.04] = \begin{bmatrix} \\ 0.04] = \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix} = \end{bmatrix}$	1.79 1.14 1.96 1.86 4.41 1.31 0.66 1.94 5.1414 16.25 5.14				(27) (27) (27) (27) (27) (27) (27) (27)

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)...(30) + (32) =

Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	20098.38	(34)
Therm	al mass	parame	ter (TMF		- TFA) ir	n kJ/m²K			Indica		100	(35)		
	-		ere the de tailed calc		constructi	ion are no	t known pr	ecisely the	indicative	values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix I	<						14.35	(36)
if details	of therma	l bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			59.05	(37)
Ventila	ation hea	t loss ca	alculated	monthl	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	43.42	43.17	42.93	41.78	41.57	40.57	40.57	40.39	40.96	41.57	42	42.46	1	(38)
Heat ti	ransfer o	oefficier	nt \N//K						(39)m	= (37) + (38)m		1	
(39)m=	102.47	102.22	101.97	100.83	100.61	99.62	99.62	99.43	100	100.61	101.05	101.5	1	
(00)11-	102.47	102.22	101.07	100.00	100.01	55.62	55.62	00.40			Sum(39)1.		100.83	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K						= (39)m ÷		12/12-	100.03	(00)
(40)m=	1.1	1.09	1.09	1.08	1.08	1.07	1.07	1.06	1.07	1.08	1.08	1.09]	
			ļ			ļ	ļ		/	Average =	Sum(40) ₁ .	₁₂ /12=	1.08	(40)
Numb	er of day	rs in moi	nth (Tab	le 1a)		-				-	-			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
if TF	ied occu A > 13.9 A £ 13.9	9, N = 1		[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13		67	J	(42)
Annua _{Reduce}	l averag	e hot wa al average	hot water		5% if the a	lwelling is	designed	(25 x N) to achieve		se target o		.62]	(43)
								A	Can	Oat	Nev	Dee	1	
Hot wat	Jan er usage i	Feb	Mar day for ea	Apr ach month	May	Jun	Jul	Aug (43)	Sep	Oct	Nov	Dec	J	
		-	-			r —	1		05.07	00.57	400.40	407.00	1	
(44)m=	107.38	103.48	99.57	95.67	91.77	87.86	87.86	91.77	95.67	99.57	103.48	107.38	4474.47	
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1171.47	(44)
(45)m=	159.25	139.28	143.72	125.3	120.23	103.75	96.14	110.32	111.64	130.1	142.02	154.22		_
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	^r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	:	1535.98	(45)
(46)m=	23.89	20.89	21.56	18.8	18.03	15.56	14.42	16.55	16.75	19.52	21.3	23.13		(46)
	storage						•							
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		210	J	(47)
Otherv		stored		ank in dw er (this ir	-			(47) mbi boil	ers) ente	er '0' in (47)			
	•		eclared I	oss facto	or is kno	wn (kWł	ı/dav).				4	32	1	(48)
			m Table			(1.1.1.1	.,]	(40)
-				, kWh/ye	əar			(48) x (49)	_		<u> </u>	54]]	
			-	cylinder l		or is not		(+0) X (49)	, =		0.	71]	(50)

lf com Volum	munity h e factor	age loss neating s from Tal	ee secti ble 2a	on 4.3	le 2 (kW	h/litre/da	ay)					0		(51) (52)
•		actor fro										0	1	(53)
		m water	-	e, kWh/y	ear			(47) x (51)) x (52) x (53) =		0		(54)
	. ,	(54) in (5									0.	71		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	22.1	19.96	22.1	21.38	22.1	21.38	22.1	22.1	21.38	22.1	21.38	22.1		(56)
If cylinde	er contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5 ⁻	7)m = (56)	m where (H11) is fro	m Append	ix H -	
(57)m=	22.1	19.96	22.1	21.38	22.1	21.38	22.1	22.1	21.38	22.1	21.38	22.1		(57)
Primar	v circuit	loss (an	nual) fro	om Table	e 3					-		0		(58)
	•	loss cal	,			59)m = ((58) ÷ 36	65 × (41)	m]	
(mo	dified by	/ factor fi	rom Tab	le H5 if t	there is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) – 30	65 x (41))m					I	
(61)m=	0							0	0	0	0	0	1	(61)
		-	-	, ,				-	-	-		-	l (59)m + (61)m	
	· · · ·	-	1		r	· · · · · ·	· · · · · ·	<u>`</u>		,	, ,	, <i>,</i>	(59)m + (61)m	(62)
(62)m=	204.61	180.25	189.08	169.2	165.59	147.65	141.5	155.68	155.53	175.46	185.92	199.58	l	(02)
		calculated								r contribut	ion to wate	er heating)		
•		l lines if	r	1	1	· · ·	· ·	i i	ŕ	-	-	-	I	(00)
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter										1	
(64)m=	204.61	180.25	189.08	169.2	165.59	147.65	141.5	155.68	155.53	175.46	185.92	199.58		-
								Outp	out from wa	ater heate	r (annual)₁	12	2070.05	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	89.24	79.09	84.08	76.78	76.26	69.61	68.25	72.97	72.24	79.55	82.34	87.57		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	Table 5	5 and 5a):									
		ns (Table			,									
metab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	160.23	160.23	160.23	160.23	160.23	160.23	160.23	160.23	160.23	160.23	160.23	160.23		(66)
Lightin	a aains	i (calcula [:]	L ted in Δι		L equat	ion I 9 o	l rlQa)a	l Iso see "	I Table 5				ł	
(67)m=	59.94	53.24	43.29	32.78	24.5	20.68	22.35	29.05	38.99	49.51	57.79	61.6	1	(67)
				I	l						01.10	0110	ĺ	()
		ins (calc	1	1	· · · · ·	r	r	, 1		1	005.00	050.00	I	(69)
(68)m=	366.17	369.97	360.4	340.01	314.28	290.1	273.94	270.14	279.72	300.1	325.83	350.02		(68)
	<u> </u>	(calcula	· · · · · ·		· · ·	· · · · · ·	, 			· · · · · ·			I	
(69)m=	53.69	53.69	53.69	53.69	53.69	53.69	53.69	53.69	53.69	53.69	53.69	53.69		(69)
Pumps	and fa	ns gains	(Table !	5a)						-	-			
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	n (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82	-106.82		(71)
Water	heating	gains (T	able 5)			•	•	•	•	•	•		1	
(72)m=	119.94	117.69	113	106.64	102.51	96.69	91.74	98.08	100.33	106.92	114.36	117.7		(72)
	L			I	I			ļ		I	I	I	i	

Total internal	gains =					(66)	m + (67)m	n + (68	3)m +	- (69)m + (70)m +	(71)m + (72)	m		
(73)m= 656.15	651	626.8	589.53	551.39	51	7.57	498.13	507	.37	529.14	566.6	3 608.08	639.42]	(73)
6. Solar gains	:														
Solar gains are ca	alculated u	using sola	r flux from	Table 6a	and a			tions	to co	nvert to th	e applic		ion.		
Orientation: A	ccess F able 6d	actor	Area m²	I		Flu	x ole 6a		т	g_ able 6b		FF Table 6c		Gains	
_					-	Tai	Jie da				_			(W)	
Northeast 0.9x	0.77	×	0.8	86	×	1	1.28	X		0.63	×	0.7	=	2.97	(75)
Northeast 0.9x	0.77	×	1.4	48	×	1	1.28	X		0.63	×	0.7	=	5.1	(75)
Northeast 0.9x	0.77	x	1.	.4	×	1	1.28	X		0.63	x	0.7	=	4.83	(75)
Northeast 0.9x	0.77	x	0.8	86	×	2	2.97	x		0.63	×	0.7	=	6.04	(75)
Northeast 0.9x	0.77	x	1.4	48	×	2	2.97	x		0.63	×	0.7	=	10.39	(75)
Northeast 0.9x	0.77	x	1.	.4	x	2	2.97	x		0.63	×	0.7	=	9.83	(75)
Northeast 0.9x	0.77	x	0.8	86	×	4	1.38	x		0.63	x	0.7	=	10.88	(75)
Northeast 0.9x	0.77	x	1.4	48	x	4	1.38	x		0.63	x	0.7	=	18.72	(75)
Northeast 0.9x	0.77	x	1.	.4	x	4	1.38	x		0.63	x	0.7	=	17.7	(75)
Northeast 0.9x	0.77	x	0.8	86	×	6	7.96	x		0.63	×	0.7	=	17.86	(75)
Northeast 0.9x	0.77	x	1.4	48	x	6	7.96	x		0.63	x	0.7	=	30.74	(75)
Northeast 0.9x	0.77	x	1.	.4	x	6	7.96	x		0.63	x	0.7	=	29.08	(75)
Northeast 0.9x	0.77	x	0.8	86	x	9	1.35	x		0.63	x	0.7	=	24.01	(75)
Northeast 0.9x	0.77	x	1.4	48	×	9	1.35	x		0.63	x	0.7	=	41.32	(75)
Northeast 0.9x	0.77	x	1.	.4	×	9	1.35	x		0.63	x	0.7	=	39.08	(75)
Northeast 0.9x	0.77	x	0.8	86	×	9	7.38	x		0.63	×	0.7	=	25.6	(75)
Northeast 0.9x	0.77	x	1.4	48	×	9	7.38	x		0.63	x	0.7	=	44.05	(75)
Northeast 0.9x	0.77	x	1.	.4	×	9	7.38	x		0.63	x	0.7	=	41.67	(75)
Northeast 0.9x	0.77	x	0.8	86	×	ç	91.1	x		0.63	x	0.7	=	23.94	(75)
Northeast 0.9x	0.77	x	1.4	48	×	ç	91.1	x		0.63	×	0.7	=	41.21	(75)
Northeast 0.9x	0.77	x	1.	.4	×	ç	91.1	x		0.63	x	0.7	=	38.98	(75)
Northeast 0.9x	0.77	x	0.8	86	×	7	2.63	x		0.63	×	0.7	=	19.09	(75)
Northeast 0.9x	0.77	x	1.4	48	×	7	2.63	x		0.63	×	0.7	=	32.85	(75)
Northeast 0.9x	0.77	x	1.	.4	×	7	2.63	x		0.63	×	0.7	=	31.07	(75)
Northeast 0.9x	0.77	×	0.8	86	×	5	0.42	x		0.63	۲ × آ	0.7	=	13.25	(75)
Northeast 0.9x	0.77	×	1.4	48	×	5	0.42	x		0.63	×	0.7	= =	22.81	(75)
Northeast 0.9x	0.77	x	1.	.4	×	5	0.42	x		0.63	×	0.7	=	21.57	(75)
Northeast 0.9x	0.77	x	0.8	86	×	2	8.07	x		0.63	× ٦	0.7	=	7.38	(75)
Northeast 0.9x	0.77	x		48	хГ		8.07	x		0.63	× ٦	0.7	=	12.69	(75)
Northeast 0.9x	0.77	×		.4	хГ		8.07	x		0.63	۲ × ۲	0.7	=	12.01	(75)
Northeast 0.9x	0.77	×		86	×		14.2	x		0.63	۲ × ۲	0.7	= =	3.73	(75)
Northeast 0.9x	0.77	×		48	×		14.2	×		0.63		0.7	-	6.42	(75)
Northeast 0.9x	0.77	×			×		14.2	×		0.63		0.7		6.07	(75)
Northeast 0.9x	0.77	x		86	×		9.21	x		0.63		0.7	-	2.42	(75)
0.01	0.11	^	<u>.</u>	- •	Ľ			1		0.00		L,		2.72	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Northeast 0.9x	0.77	×	1.48	×	9.21	x	0.63	x	0.7	=	4.17	(75)
Northeast 0.9x	0.77	x	1.4	x	9.21	x	0.63	x	0.7	=	3.94	(75)
Southwest _{0.9x}	0.77	x	1.35	x	36.79		0.63	x	0.7	=	15.18	(79)
Southwest _{0.9x}	0.77	x	3.33	x	36.79		0.63	x	0.7	=	37.44	(79)
Southwest _{0.9x}	0.77	x	0.99	x	36.79		0.63	x	0.7	=	11.13	(79)
Southwest _{0.9x}	0.77	x	1.46	x	36.79		0.63	x	0.7	=	16.42	(79)
Southwest0.9x	0.77	x	1.35	×	62.67		0.63	x	0.7	=	25.86	(79)
Southwest _{0.9x}	0.77	x	3.33	x	62.67		0.63	x	0.7	=	63.78	(79)
Southwest _{0.9x}	0.77	x	0.99	x	62.67		0.63	x	0.7	=	18.96	(79)
Southwest0.9x	0.77	x	1.46	x	62.67		0.63	x	0.7	=	27.96	(79)
Southwest _{0.9x}	0.77	x	1.35	x	85.75		0.63	x	0.7	=	35.38	(79)
Southwest _{0.9x}	0.77	x	3.33	x	85.75		0.63	x	0.7	=	87.27	(79)
Southwest _{0.9x}	0.77	x	0.99	x	85.75		0.63	x	0.7	=	25.95	(79)
Southwest _{0.9x}	0.77	x	1.46	x	85.75		0.63	x	0.7	=	38.26	(79)
Southwest _{0.9x}	0.77	×	1.35	×	106.25		0.63	x	0.7	=	43.84	(79)
Southwest _{0.9x}	0.77	x	3.33	×	106.25		0.63	x	0.7	=	108.13	(79)
Southwest _{0.9x}	0.77	x	0.99	x	106.25		0.63	x	0.7	=	32.15	(79)
Southwest _{0.9x}	0.77	×	1.46	x	106.25		0.63	x	0.7	=	47.41	(79)
Southwest _{0.9x}	0.77	x	1.35	x	119.01		0.63	x	0.7	=	49.1	(79)
Southwest _{0.9x}	0.77	x	3.33	x	119.01		0.63	x	0.7	=	121.12	(79)
Southwest0.9x	0.77	x	0.99	x	119.01		0.63	x	0.7	=	36.01	(79)
Southwest _{0.9x}	0.77	x	1.46	x	119.01		0.63	x	0.7	=	53.1	(79)
Southwest0.9x	0.77	x	1.35	×	118.15		0.63	x	0.7	=	48.75	(79)
Southwest0.9x	0.77	x	3.33	x	118.15		0.63	x	0.7	=	120.24	(79)
Southwest0.9x	0.77	x	0.99	x	118.15		0.63	x	0.7	=	35.75	(79)
Southwest _{0.9x}	0.77	×	1.46	×	118.15		0.63	x	0.7	=	52.72	(79)
Southwest _{0.9x}	0.77	×	1.35	x	113.91		0.63	x	0.7	=	47	(79)
Southwest _{0.9x}	0.77	x	3.33	x	113.91		0.63	x	0.7	=	115.92	(79)
Southwest _{0.9x}	0.77	x	0.99	×	113.91		0.63	x	0.7	=	34.46	(79)
Southwest0.9x	0.77	X	1.46	X	113.91		0.63	X	0.7	=	50.83	(79)
Southwest _{0.9x}	0.77	X	1.35	X	104.39		0.63	X	0.7	=	43.07	(79)
Southwest _{0.9x}	0.77	X	3.33	X	104.39		0.63	X	0.7	=	106.24	(79)
Southwesto.9x	0.77	X	0.99	X	104.39		0.63	x	0.7	=	31.58	(79)
Southwest _{0.9x}	0.77	X	1.46	X	104.39		0.63	X	0.7	=	46.58	(79)
Southwest _{0.9x}	0.77	X	1.35	X	92.85		0.63	x	0.7	=	38.31	(79)
Southwesto.9x	0.77	X	3.33	X	92.85		0.63	X	0.7	=	94.49	(79)
Southwesto or	0.77	X	0.99	×	92.85		0.63	×	0.7	=	28.09	(79)
Southwesto.9x	0.77	X	1.46	×	92.85		0.63	x	0.7	=	41.43	(79)
Southwest _{0.9x}	0.77	x x	1.35	X	69.27		0.63	x	0.7	=	28.58	(79)
Southwest _{0.9x}	0.77	x x	3.33	X	69.27		0.63	x	0.7	=	70.49	(79)
	0.77	×	0.99	×	69.27		0.63	x	0.7	=	20.96	(79)

Southwest0.9x	0.77			40			0.07	1	0.00		ז ע ר	0.7			4 (7	70)
Southwest _{0.9x}	0.77	×		46	x		39.27]	0.6			0.7	=	30.9		79) 70)
L	0.77	×	1.3		X		4.07	1	0.6		X] T	0.7	=	18.1		79)
Southwest _{0.9x}	0.77	×	3.		X		4.07]	0.6			0.7	=	44.8		79)
Southwest _{0.9x}	0.77	×	0.	99	X	4	4.07		0.6	3		0.7	=	13.3		79)
Southwest _{0.9x}	0.77	X	1.	46	X	4	4.07		0.6	3	×	0.7	=	19.6	6 (7	79)
Southwest _{0.9x}	0.77	x	1.3	35	x	3	31.49		0.6	3	×	0.7	=	12.9	9 (7	79)
Southwest _{0.9x}	0.77	x	3.	33	x	3	31.49		0.6	3	×	0.7	=	32.0	4 (7	79)
Southwest _{0.9x}	0.77	x	0.	99	x	3	31.49		0.6	3	×	0.7	=	9.53	3 (7	79)
Southwest _{0.9x}	0.77	x	1.4	46	x	3	31.49		0.6	3	x	0.7	=	14.0	5 <mark>(7</mark>	79)
Northwest 0.9x	0.77	X	0.	5	x	1	1.28	x	0.6	3	x	0.7	=	1.72	<u>2</u> (8	31)
Northwest 0.9x	0.77	x	0.	5	x	1	1.28	x	0.6	3	x	0.7	=	1.72	<u>2</u> (8	31)
Northwest 0.9x	0.77	x	0.	.5	x	2	2.97	x	0.6	3	x	0.7	=	3.5	(8	31)
Northwest 0.9x	0.77	x	0.	5	x	2	2.97	x	0.6	3	x	0.7	=	3.5	ı (8	31)
Northwest 0.9x	0.77	x	0.	5	x	4	1.38	x	0.6	3	x	0.7	=	6.32	2 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	4	1.38	x	0.6	3	x	0.7	=	6.32	2 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	6	67.96	x	0.6	3	x	0.7	=	10.3	8 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	6	67.96	x	0.6	3	x	0.7	=	10.3	8 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	g	91.35	x	0.6	3	x	0.7	=	13.9	6 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	9	91.35	x	0.6	3	x	0.7	=	13.9	6 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	9	97.38	x	0.6	3	x	0.7	=	14.8	8 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	g	97.38	x	0.6	3	x	0.7	=	14.8	8 (8	31)
Northwest 0.9x	0.77	x	0.	5	x		91.1	x	0.6	3	x	0.7	=	13.9	2 (8	31)
Northwest 0.9x	0.77	x	0.	5	x		91.1	x	0.6	3	x	0.7	=	13.9	2 (8	31)
Northwest 0.9x	0.77	x	0.	5	x	7	2.63	x	0.6	3	x	0.7	=	11.1	(8	31)
Northwest 0.9x	0.77	x	0.	5	x	7	2.63	x	0.6	3	x	0.7	=	11.1	ı (8	31)
Northwest 0.9x	0.77	x	0.	5	x	5	50.42	x	0.6	3	x	0.7	=	7.7	(8	31)
Northwest 0.9x	0.77	x	0.	5	x	5	50.42	x	0.6	3	x	0.7	=	7.7	(8	31)
Northwest 0.9x	0.77	x	0.	5	x	2	28.07	x	0.6	3	x	0.7	=	4.29) (8	31)
Northwest 0.9x	0.77	x	0.	5	x	2	28.07	x	0.6	3	x	0.7	=	4.29) (8	31)
Northwest 0.9x	0.77	x	0.	5	x		14.2	x	0.6	3	x	0.7	=	2.17	7 (8	31)
Northwest 0.9x	0.77	x	0.	5	x		14.2	x	0.6	3) × [0.7	=	2.17	7 (8	31)
Northwest 0.9x	0.77	x	0.	.5	x		9.21	x	0.6	3	x [0.7	=	1.4	(8)	31)
Northwest 0.9x	0.77	x	0.	.5	x		9.21	x	0.6	3] × [0.7	= =	1.4	(8	31)
-								-								
Solar <u>g</u> ains in	watts, ca	alculated	for eac	h mont	th			(83)m	i = Sum(7	4)m	(82)m			_		
(83)m= 96.52	169.84	246.8	329.97	391.65		98.52	380.18	332	.68 275	5.37	191.59	116.6	81.96		(8	33)
Total gains – i			·	· · ·	`	,	i							-		
(84)m= 752.67	820.83	873.6	919.5	943.04	4 9	16.09	878.31	840	.05 804	.51	758.23	724.68	721.38]	(8	34)

7. Mean internal temperature (heating season)Temperature during heating periods in the living area from Table 9, Th1 (°C)

Utilisation factor for gains for living area, h1,m (see Table 9a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(85)

21

(86)m=	0.94	0.92	0.88	0.82	0.73	0.59	0.46	0.49	0.67	0.84	0.91	0.94		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	r in Table	ə 9c)					
(87)m=	19.04	19.26	19.62	20.09	20.51	20.81	20.93	20.91	, 20.71	20.19	19.54	18.99		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, Tl	n2 (°C)					
(88)m=	20	20.01	20.01	20.02	20.02	20.03	20.03	20.03	20.03	20.02	20.02	20.01		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.93	0.91	0.87	0.8	0.69	0.52	0.37	0.4	0.61	0.81	0.9	0.93		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	17.4	17.72	18.24	18.91	19.47	19.85	19.98	19.97	19.74	19.05	18.14	17.35		(90)
							-		f	LA = Livin	g area ÷ (4	4) =	0.17	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA x T1	+ (1 – fL	.A) × T2					
(92)m=	17.69	17.99	18.48	19.11	19.65	20.02	20.15	20.13	19.91	19.25	18.38	17.63		(92)
Apply	adjustn	nent to t	ne mear	n internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	17.54	17.84	18.33	18.96	19.5	19.87	20	19.98	19.76	19.1	18.23	17.48		(93)
		ting requ												
				mperatur using Ta		ned at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
uie ui	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa		tor for g		· · ·	Iviay		Jui	Aug	Ocp	000		Dee		
(94)m=	0.9	0.87	0.83	0.77	0.66	0.51	0.37	0.4	0.59	0.77	0.87	0.91		(94)
Usefu	l gains,	hmGm ,	, W = (94	4)m x (84	4)m									
(95)m=	675.11	716.78	728.81	704.25	623.66	469.19	322.68	335.93	477.97	586.61	627.52	652.85	l	(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2	l	(96)
Heat I	oss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1356.39	1322.37	1206.37	1014.81	785.29	524.95	338.4	356.31	565.76	855.44	1125.11	1348.09	I	(97)
· ·	e heatin	<u> </u>		i		Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	ŕ		l	
(98)m=	506.87	406.96	355.31	223.6	120.26	0	0	0	0	200.01	358.27	517.26		_
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2688.52	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								28.76	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	HP)					
Space	e heatir	ng:												_
Fracti	on of sp	ace hea	t from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	it from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1							ĺ	93.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	n, %					İ	0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space				alculate		ļ.		5						
	506.87	406.96	355.31	223.6	120.26	0	0	0	0	200.01	358.27	517.26		
(211)m	ı = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)		•							(211)
. ,	543.85	436.65	381.23	239.91	, 129.03	0	0	0	0	214.6	384.41	555		
				•				Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	-	2884.68	(211)

Space heating fuel (secondary), kWh/month

= {[(98)m x (201)] } x 100 ÷ (208)									
(215)m= 0 0 0 0	0 0	0	0	0	0	0	0		_
			Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	F	0	(215)
Water heating	,								
Output from water heater (calculated abc 204.61 180.25 189.08 169.2	ove) 165.59 147.65	141.5	155.68	155.53	175.46	185.92	199.58		
Efficiency of water heater								80.1	(216)
	84.28 80.1	80.1	80.1	80.1	85.46	86.84	87.54		(217)
Fuel for water heating, kWh/month								1	
$(219)m = (64)m \times 100 \div (217)m$	100 40 404 00	470.05	404.00	404.40	005.04	0111	007.00	1	
(219)m= 234 206.65 217.9 197.06	196.48 184.33	176.65	194.36 Tota	194.18 I = Sum(21	205.31	214.1	227.98	2448.99	(219)
Annual totals			Tota	i – Oum(2		Wh/year		kWh/year](219)
Space heating fuel used, main system 1					N	wii/yeai		2884.68	1
Water heating fuel used								2448.99	1
Electricity for pumps, fans and electric ke	ep-hot								1
central heating pump:							30	1	(230c)
boiler with a fan-assisted flue]	
				- ((000 -)	(000 -)		45		(230e)
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			75	(231)
Electricity for lighting								423.4	(232)
Electricity generated by PVs								-1606.39	(233)
Total delivered energy for all uses (211).	(221) + (231)) + (232).	(237b)	=				4225.68	(338)
10a. Fuel costs - individual heating syst	ems:								
	Fu				Fuel P			Fuel Cost	
		Vh/year			(Table	<i>,</i>	0.04	£/year	7
Space heating - main system 1		1) x			3.4	.0		100.39	(240)
Space heating - main system 2	(21	3) x			0		x 0.01 =	0	(241)
Space heating - secondary	(21	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(21	9)			3.4	8	x 0.01 =	85.22	(247)
Pumps, fans and electric keep-hot	(23	1)			13.	19	x 0.01 =	9.89	(249)
(if off-peak tariff, list each of (230a) to (23 Energy for lighting	30g) separatel (23		licable a	nd apply	fuel prie		ding to - x 0.01 =	Table 12a	(250)
Additional standing charges (Table 12)								120	(251)
5 5 V ,									-
		e of (233) to	o (235) x)		13.	19	x 0.01 =	-211.88	(252)
Appendix Q items: repeat lines (253) and	. ,								
	(245)(247) + (2	50)(254)	=					159.47	(255)
11a. SAP rating - individual heating system	tems								
Energy cost deflator (Table 12)								0.42	(256)

Energy cost factor (ECF) [(2 SAP rating (Section 12)	255) x (256)] ÷ [(4) + 45.0] =		0.48 (257) 93.25 (258)
12a. CO2 emissions – Individual heating	systems including micro-CH	Ρ	
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	623.09 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	528.98 (264)
Space and water heating	(261) + (262) + (263) +	(264) =	1152.07 (265)
Electricity for pumps, fans and electric kee	p-hot (231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	219.74 (268)
Energy saving/generation technologies Item 1		0.519 =	-833.72 (269)
Total CO2, kg/year		sum of (265)(271) =	577.02 (272)
CO2 emissions per m ²		(272) ÷ (4) =	6.17 (273)
EI rating (section 14)			94 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3519.31 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	2987.77 (264)
Space and water heating	(261) + (262) + (263) +	(264) =	6507.08 (265)
Electricity for pumps, fans and electric kee	p-hot (231) x	3.07 =	230.25 (267)
Electricity for lighting	(232) x	0 =	1299.84 (268)
Energy saving/generation technologies Item 1		3.07 =	-4931.63 (269)
'Total Primary Energy		sum of (265)(271) =	3105.54 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	33.22 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 40

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overhangs: Thermal mass parameter: Night ventilation:	Semi-detached House England East Anglia Yes 2 North East Average or unknown None Indicative Value Low False	
Night ventilation: Blinds, curtains, shutters: Ventilation rate during hot weather (ach):	False Dark-coloured curtain or roller blind 4 (Windows open half the time)	
Overheating Details:		
Summer ventilation heat loss coefficient:	296.14	(P1)

296.14 59 355.19

Summer ventilation heat loss coefficient:
Transmission heat loss coefficient:
Summer heat loss coefficient:

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South West (W_97)	0	1
North East (W_98)	0	1
North East (W_99)	0	1
North East (W_100)	0	1
South West (W_101)	0	1
South West (W_102)	0	1
North West (W_103)	0	1
North West (W_104)	0	1
South West (W_105)	0	1

Solar shading:

Orientation:	Z blind	ls:	Solar access:	Ove	rhangs:	Z summer:	
South West (W_97)	0.85		0.9	1		0.76	(P8)
North East (W_98)	0.85		0.9	1		0.76	(P8)
North East (W_99)	0.85		0.9	1		0.76	(P8)
North East (W_100)	0.85		0.9	1		0.76	(P8)
South West (W_101)	0.85		0.9	1		0.76	(P8)
South West (W_102)	0.85		0.9	1		0.76	(P8)
North West (W_103)	0.85		0.9	1		0.76	(P8)
North West (W_104)	0.85		0.9	1		0.76	(P8)
South West (W_105)	0.85		0.9	1		0.76	(P8)
Solar gains:							
Orientation		Area	Flux	g_	FF	Shading	Gains
South West (W_97)	0.9 x	1.35	122.31	0.63	0.7	0.76	50.14
North East (W_98)	0.9 x	0.86	100.04	0.63	0.7	0.76	26.12
North East (W_99)	0.9 x	1.48	100.04	0.63	0.7	0.76	44.96
North East (W_100)	0.9 x	1.4	100.04	0.63	0.7	0.76	42.53
South West (W_101)	0.9 x	3.33	122.31	0.63	0.7	0.76	123.67
South West (W_102)	0.9 x	0.99	122.31	0.63	0.7	0.76	36.77

(P2)

SAP 2012 Overheating Assessment

North West (W_103) North West (W_104) South West (W_105)	0.9 x 0.9 x 0.9 x	0.5 0.5 1.46	100.04 100.04 122.31	0.63 0.63 0.63	0.7 0.7 0.7	0.76 0.76 0.76 Total	15.19 15.19 54.22 408.77	(P3/P4)
Internal gains:								
				J	une	July	August	
Internal gains				5	14.57	495.13	504.37	
Total summer gains				9	47.44	903.91	864.36	(P5)
Summer gain/loss ratio)			2	.67	2.54	2.43	(P6)
Mean summer external	tempera	ture (Eas	st Anglia)	1!	ō.4	17.6	17.6	
Thermal mass tempera	ture incre	ement		1.	3	1.3	1.3	
Threshold temperature				10	9.37	21.44	21.33	(P7)
Likelihood of high int	ernal ter	nperature	9	Ν	ot significant	Slight	Slight	

Assessment of likelihood of high internal temperature:

<u>Slight</u>