Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.60 Printed on 09 September 2024 at 15:58:23

Project Information:

Assessed By: Liam Mason (STRO033679) **Building Type:**

Flat

Dwelling Details:

NEW DWELLING AS BUILT Total Floor Area: 69.97m²

Site Reference: Plot Reference: Willingale Road 04-19-75435 PL1 P5 (apt)

1 Middleton Court, 90 Willingale Road, Loughton, IG10 2DA Address:

Client Details:

Name: Galldris Group

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

19.37 kg/m² Target Carbon Dioxide Emission Rate (TER)

Dwelling Carbon Dioxide Emission Rate (DER) 18.24 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 53.5 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 43.9 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.17 (max. 0.30)	0.17 (max. 0.70)	OK
Floor	0.10 (max. 0.25)	0.10 (max. 0.70)	OK
Roof	(no roof)		
Openings	1.29 (max. 2.00)	1.30 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 2.13 OK Maximum 10.0

4 Heating efficiency

Main Heating system: Database: (rev 512, product index 018907):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester Model: Greenstar 4000

Model qualifier: GR4700iW 30 C NG

(Combi)

Efficiency 89.3 % SEDBUK2009

Minimum 88.0 %

None Secondary heating system:

Stroma FSAP 2012 Version: 1.0.5.60 (SAP 9.92) - http://www.stroma.com

OK

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls Hot water controls:	Programmer, room therm No cylinder thermostat No cylinder	nostat and TRVs	ок
Boiler interlock:	Yes		ок
7 Low energy lights			
Percentage of fixed lights wi Minimum	th low-energy fittings	100.0% 75.0%	ОК
8 Mechanical ventilation			
Continuous extract system (Specific fan power: Maximum	decentralised)	0.16 0.18 0.7	ОК
9 Summertime temperature			
Overheating risk (Thames va Based on:	alley):	Slight	ок
Overshading: Windows facing: North West Windows facing: South East Ventilation rate: Blinds/curtains:		Average or unknown 7.72m² 4.01m² 3.00 Dark-coloured curtain or roller bli Closed 100% of daylight hours	ind
10 Key features		2.4 m3/m2h	
Air permeablility Floors U-value		2.1 m³/m²h 0.1 W/m²K	

SAP Input

Property Details: 04-19-75435 PL1 P5 (apt)

Address: 1 Middleton Court, 90 Willingale Road, Loughton, IG10 2DA

Located in: England Region: Thames valley

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

Transaction type:

New dwelling

New dwelling

New dwelling

Tenure type: Unknown
Related party disclosure: No related party
Thermal Mass Parameter: Indicative Value Medium

Water use <= 125 litres/person/day: True

PCDF Version: 512

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2024

Floor Location: Floor area:

Storey height:

Floor 0 69.97 m² 2.4 m

Living area: 26.13 m² (fraction 0.373)

Front of dwelling faces: North West

Opening types:

Name: Source: Type: Glazing: Argon: Frame: PVC-U Solid Manufacturer **Entrance** Front Manufacturer Windows low-E, En = 0.05, soft coat Yes Wood Rear SAP 2012 Windows low-E, En = 0.05, soft coat Yes Wood

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Entrance	mm	0.7	0	1.2	2.01	1
Front	16mm or more	0.7	0.63	1.3	7.72	1
Rear	16mm or more	0.7	0.63	1.3	4.01	1

Type-Name: Orient: Width: Height: Name: Location: North West **Brick Entrance** North West 0 Front **Brick** 0 Rear **Brick** South East 0

Overshading: Average or unknown

Opaque Elements:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Element	<u>:S</u>						
Brick	69.92	13.74	56.18	0.17	0	False	N/A
Corridor	14.54	0	14.54	0.16	0	False	N/A
Ground floor	69.97			0.1			N/A
Internal Element	<u>s</u>						
Internal wall	142						N/A
Party Elements							
Party ceiling	69.97						N/A

Thermal bridges:

SAP Input

Psi-value

User-defined (individual PSI-values) Y-Value = 0.0772 Thermal bridges: Length

> Other lintels (including other steel lintels) E2 [Approved] 7.07 0.3 Sill [Approved] 1.77 0.04 E3 [Approved] E4 Jamb 22.13 0.05

Ground floor (normal) [Approved] 33.52 0.16 E5

Party floor between dwellings (in blocks of flats) [Approved] 33.52 0.07 E7 Corner (normal) [Approved] 10.08 0.09 E16

Pressure test: Yes (As built)

Decentralised whole house extract Ventilation:

Number of fans in Wetroom: Kitchen 1 Other 1

Ductwork: ,

Approved Installation Scheme: True

Number of chimneys: 0 Number of open flues: 0 Number of fans: 0 Number of passive stacks: Number of sides sheltered:

Pressure test: 2.13 (Assessed dwelling is tested)

Boiler systems with radiators or underfloor heating Main heating system:

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 512, product index 018907) Efficiency: Winter 87.6 % Summer: 90.2

Brand name: Worcester Model: Greenstar 4000

Model qualifier: GR4700iW 30 C NG

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Room-sealed Boiler interlock: Yes Delayed start

Programmer, room thermostat and TRVs Main heating Control:

Control code: 2106

Secondary heating system: None

From main heating system Water heating:

> Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Standard Tariff Electricity tariff: In Smoke Control Area: Unknown Conservatory: No conservatory

100% Low energy lights:

Low rise urban / suburban Terrain type:

EPC language: English

SAP Input

Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

		User I	Details:						
Assessor Name:	Liam Mason		Strom	a Num	ber:		STRC	0033679	
Software Name:	Stroma FSAP 2012	rsion:		Versio	on: 1.0.5.60				
		·	Address			`	apt)		
Address: 1. Overall dwelling dime	1 Middleton Court, 90 Willing	ngale Ro	ad, Loug	hton, IG	10 2DA				
1. Overall awelling aime	511310113.	Are	a(m²)		Av. He	ight(m)		Volume(m³)	
Ground floor				(1a) x		2.4	(2a) =	167.93	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n) (69.97	(4)			-		_
Dwelling volume		<u> </u>		(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	167.93	(5)
2. Ventilation rate:									
	main seconda heating heating	ry	other		total			m³ per houi	•
Number of chimneys	0 + 0	7 + [0	=	0	X	40 =	0	(6a)
Number of open flues	0 + 0	-	0	Ī = Ī	0	x	20 =	0	(6b)
Number of intermittent fa	ans				0	x	10 =	0	(7a)
Number of passive vents	3			Ē	0	x	10 =	0	(7b)
Number of flueless gas f	ires				0	X	40 =	0	(7c)
				<u>L</u>				_	_
				_			Air ch	nanges per ho	ur —
	eys, flues and fans = (6a)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b			continue f	0		÷ (5) =	0	(8)
Number of storeys in t		50 to (17),	ourier wise t	continue n	OIII (9) 10	(10)		0	(9)
Additional infiltration						[(9)	-1]x0.1 =	0	(10)
	0.25 for steel or timber frame o			•	ruction			0	(11)
if both types of wall are p deducting areas of openi	resent, use the value corresponding tings); if equal user 0.35	o the grea	ter wall are	ea (atter					
•	floor, enter 0.2 (unsealed) or 0).1 (seal	ed), else	enter 0				0	(12)
If no draught lobby, en	·							0	(13)
Percentage of window Window infiltration	s and doors draught stripped		0.25 - [0.2) v (14) ± 1	1001 -			0	(14)
Infiltration rate			(8) + (10)		_	+ (15) =		0	(15)
	q50, expressed in cubic metr	es per h					area	2.1300001144409	╡`
If based on air permeabi	lity value, then $(18) = [(17) \div 20] +$	(8), otherw	vise (18) = ((16)		·		0.11	(18)
	es if a pressurisation test has been do	ne or a de	gree air pe	rmeability	is being u	sed			_ _
Number of sides sheltere Shelter factor	ed		(20) = 1 -	[0.075 x (*	19)] =			3	(19) (20)
Infiltration rate incorpora	ting shelter factor		(21) = (18		/,1			0.78	(21)
Infiltration rate modified f	_		. , ,	, , ,				0.00	
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average wind sp	peed from Table 7							•	
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7]	
Wind Factor (22a)m = (2	2)m ∸ 4								
	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18]	
			-				-	ı	

djusted infiltration rate (allowing for shelt		i 	r` ´	` 					
0.11 0.1 0.1 0.09 0 alculate effective air change rate for the	.09 0.08	0.08	0.08	0.08	0.09	0.09	0.1		
If mechanical ventilation:	аррисаыс сс	100						0.5	(2
If exhaust air heat pump using Appendix N, (23b)	= (23a) × Fmv (equation (I	N5)) , othe	rwise (23b) = (23a)		i	0.5	(2
If balanced with heat recovery: efficiency in % allo	wing for in-use t	factor (fron	n Table 4h) =			i	0	(2
a) If balanced mechanical ventilation wit	h heat recov	ery (MV	HR) (24a	a)m = (2	2b)m + (23b) × [ا (23c) – 1	÷ 100]	
4a)m= 0 0 0 0	0 0	0	0	0	0	0	0		(2
b) If balanced mechanical ventilation with	hout heat red	covery (ľ	MV) (24b)m = (22	2b)m + (23b)			
4b)m= 0 0 0 0	0 0	0	0	0	0	0	0		(2
c) If whole house extract ventilation or p	ositive input	ventilatio	on from o	outside	•	•			
if $(22b)m < 0.5 \times (23b)$, then $(24c) =$	(23b); other	wise (24	c) = (22k	o) m + 0.	.5 × (23b)			
4c)m= 0.5 0.5 0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(
d) If natural ventilation or whole house p	•								
if (22b)m = 1, then (24d)m = (22b)m		'	 				 1		,
4d)m= 0 0 0 0	0 0	0	0	0	0	0	0		(
Effective air change rate - enter (24a) or	` 	r ` ` 	'	`			1 1		,
5)m= 0.5 0.5 0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(
B. Heat losses and heat loss parameter:									
LEMENT Gross Openings	Net A		U-val		AXU		k-value		Χk
area (m²) m²	A ,ı	M² ────	W/m2	K .	(W/I	K)	kJ/m²∙ŀ	΄ Κ.	J/K
oors	2.01		1.2	= [2.412	_			(
indows Type 1	7.72	x1	/[1/(1.3)+	0.04] =	9.54				(
indows Type 2	4.01	x1	/[1/(1.3)+	0.04] =	4.96				
oor	69.9	7 ×	0.1	=	6.997				
alls Type1 69.92 13.74	56.18	8 x	0.17	= [9.55				
alls Type2 14.54 0	14.54	4 x	0.16	=	2.33				
otal area of elements, m ²	154.4	13							(
arty ceiling	69.9	7				[
ternal wall **	142					Ī		i	
or windows and roof windows, use effective windo	w U-value calcu	ــــــا lated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	ם as given in	paragraph	3.2	
include the areas on both sides of internal walls ar	nd partitions						_		
abric heat loss, W/K = S (A x U)			(26)(30)	+ (32) =				35.78	
eat capacity Cm = S(A x k)				((28).	(30) + (32	2) + (32a).	(32e) =	12868.05	
nermal mass parameter (TMP = Cm ÷ TF	FA) in kJ/m²K	(Indica	tive Value	: Medium		250	
r design assessments where the details of the cor	struction are no	t known pi	recisely the	indicative	values of	TMP in T	able 1f		
n be used instead of a detailed calculation. nermal bridges : S (L x Y) calculated usir	na Annendiy	K					ı	11.92	
details of thermal bridging are not known (36) = 0.0							l	11.92	—'
otal fabric heat loss	(0.7)			(33) +	(36) =		I	47.7	
entilation heat loss calculated monthly				(38)m	= 0.33 × ([25)m x (5])		
i	May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	7.71 27.71	27.71	27.71	27.71	27.71	27.71	27.71		(
eat transfer coefficient, W/K				(39)m	= (37) + (37)	38)m			
	5.4 75.4	75.4	75.4	75.4	75.4	75.4	75.4		
9)m= 75.4 75.4 75.4 75.4 7	0.4 1 / 1 4		1 /: 3 4	1 /:) 4	1 /:14				

Heat loss para	meter (l	HLP). W/	m²K					(40)m	= (39)m ÷	÷ (4)			
(40)m= 1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08		
` /					<u> </u>	<u> </u>	<u> </u>	<u> </u>	L Average =	: Sum(40) _{1.}	12 /12=	1.08	(40)
Number of day	s in mo	nth (Tab	le 1a)							, ,			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
<u> </u>													
4. Water heat	ing one	rav regui	romont:								kWh/ye	or:	
4. Water neat	ing ene	igy requi	rement.								KVVII/ye	<i>τ</i> αι.	
Assumed occu if TFA > 13.9 if TFA £ 13.9	0, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13		25		(42)
Annual average Reduce the annual not more that 125	l average	hot water	usage by	5% if the a	lwelling is	designed t			se target c		7.53		(43)
			- ,			·	T .	_		1			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage ir	i ilires pei	t day for ea			Clor Hom .	rabie icx							
(44)m= 96.28	92.78	89.28	85.78	82.28	78.78	78.78	82.28	85.78	89.28	92.78	96.28		_
Energy content of	hot water	used - cali	culated mo	anthly – 4	190 x Vd r	туптуГ)Tm / 3600			ım(44) ₁₁₂ = ables 1b. 1		1050.34	(44)
(45)m= 142.78	124.88	128.86	112.35	107.8	93.02	86.2	98.91	100.1	116.65	127.33	138.28	4077.40	(45)
If instantaneous w	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46		Total = Su	ım(45) ₁₁₂ =	=	1377.16	(45)
(46)m= 21.42	18.73	19.33	16.85	16.17	13.95	12.93	14.84	15.01	17.5	19.1	20.74		(46)
Water storage		19.55	10.03	10.17	13.93	12.93	14.04	13.01	17.5	19.1	20.74		(10)
Storage volume) includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	eating a	and no ta	nk in dw	velling, e	nter 110	litres in	(47)						
Otherwise if no	stored	hot wate	er (this in	ıcludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in ((47)			
Water storage													
a) If manufacti	urer's d	eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temperature fa	actor fro	m Table	2b								0		(49)
Energy lost fro		_	-				(48) x (49)) =			0		(50)
b) If manufacti			-										(= A)
Hot water stora	•			e 2 (KVVI	n/litre/da	ay)					0		(51)
Volume factor	_		311 4.3								0		(52)
Temperature fa			2b							-	0		(53)
Energy lost fro				-ar			(47) x (51)) x (52) x ((53) =		0		(54)
Enter (50) or (•	, 100 VIII/ y C	Jui			(11)11(01)	, x (0 2) x (,00)	-	0		(55)
Water storage	, ,	,	or each	month			((56)m = (55) × (41)	m		<u> </u>		(55)
										1 0			(56)
(56)m= 0 If cylinder contains	0 dedicate	0 d solar sto	0 rage, (57)ı	m = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0), else (5	0 7)m = (56)	0 m where (0 (H11) is fro	0 m Append	ix H	(30)
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nual) fro	m Table	3							0		(58)
Primary circuit	•	•			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by				•	•	. ,	, ,		r thermo	ostat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
				•	•	•——	•——	•——	•				

Combi loss calculated for each month (61)m = (60) + 305 x (41)m (61)m = 28.44 25.69 28.43 27.51 28.42 27.5 28.42 28.42 27.51 28.43 27.52 28.44 (61) Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 166.72 (62) Solar DHV input calculated using Appendix G or Appendix H (registive quantity) (enter 10" for solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS appliess, see Appendix G) (63) OUtput from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 166.72 Output from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 166.72 Output from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 156.72 Output from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 156.72 Output from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 156.72 Output from water heater (64)m = 171.22 150.57 157.3 139.86 136.22 120.52 114.61 127.33 127.6 145.08 154.85 156.72 Output from water heater (64)m = 171.22 150.57 157.3 139.85 136.22 120.52 114.61 127.33 127.8 145.08 154.85 156.72 Output from water heater (64)m = 171.22 150.57 157.3 139.85 138.25 139	Carabilana anlawlata dif			(04)	(00) - 0	OF (44)	١							
Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = (71,22 150,57 157,3 139,86 136,22 102,62 114,61 127,33 127,6 145,08 154,85 166,72 Solar PHV input calculated using Appendix G or Appendix H (negative quantity) (enter 0f in a solar contribution to water heating) (add additional lines if FGHS and/of wWHRS) applies, see Appendix G) (63)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						- ` ` 		10 1	27.51	20.42	07.50	T 20 44	1	(61)
(62) Solar PHW input calculated using Appendix G or Appendix H (negative quantity) (enter or if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) Output from water heater ((44)m= 171,22 150,57 157,3 138,86 136,22 120,52 114,61 127,33 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 150,57 157,3 138,86 136,22 120,52 114,61 127,33 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 150,57 157,3 138,86 136,22 120,52 114,61 127,33 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 150,57 157,3 138,86 136,22 120,52 114,61 127,33 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 150,57 157,3 138,86 136,22 120,52 114,61 127,33 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 154,52 144,51 145,73 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 154,52 144,51 145,73 127,6 145,08 154,85 166,72 Output from water heater ((44)m= 171,22 154,52 144,51 145,73 145,08 154,85 166,72 Output from water heater ((44)m= 171,24 144,52 144,52 144,51 145,08 154,85 166,72 (65)m= 54,59 47,94 49,96 44,23 42,95 37,81 35,76 39,99 40,16 45,89 49,22 53,09 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating S. Internal gains (Calculated in Appendix L, equation L1 or L94, 136,95 20,30 29,75 20,75 34,75 34,72	` '												(50) (04)	(01)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter 0" if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	`						`	_			ì ´	`	(59)m + (61)m l	(62)
Cadid additional lines if FGHRS and/or WHRS applies, see Appendix G	` '					<u> </u>							l	(62)
Coutput from water heater (64)me										r contribu	tion to wate	er neating)		
Output from water heater (64)ms	`	r				 	.			0	1 0		1	(63)
	` '		0	Ů	Ů	L		!	0		<u> </u>		J	(00)
Couput from water heater (annual) 1711.89 (64)	·		130.86	136 22	120.52	114.61	127	33	127.6	1/5 08	15/1 85	166 72	1	
Heat gains from water heating, kWh/month 0.25 ' [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m = 54.59	(04)111- 171.22 100.07	107.0	100.00	100.22	120.02	114.01	ļ					l	1711.89	T ₍₆₄₎
66 me	Heat gains from water I	hoating	k\\/h/m/	onth 0.2	5 ′ [O 85	. v (15)m								
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 134.72 134.	<u> </u>					- ` ´ 	Ò				- ` ´ 	- `]	(65)
Metabolic gains (Table 5), Watts	` '					<u> </u>						ļ.] posting	()
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	, ,		· , ,		yiiiiuei i	3 111 1116 (JWEIII	ing (or riot w	alei is i	IOIII COIII	iiiiuiiity i	leating	
Sep			·).										
(66)me 134.72 134				May	lun	lul	Ι	ا ۵٫	Son	Oct	Nov	Doc	1	
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)me	 			<u> </u>		-	_	- 			_	 	•	(66)
(67)m= 45.45	` '					<u> </u>	l			1011.72	102	1012	I	()
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 294.37		 i				 	_	_		37 55	43.82	46.72	1	(67)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3	` '	l				<u> </u>					10.02	40.72	J	()
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m=	· · · · · · · · · · · · · · · · · · ·					T	–				261.04	281 38	1	(68)
Figure	` '										201.04	201.50	J	(00)
Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		 i	-	<u> </u>			_	_			50.72	50.72	1	(69)
Crown Southeast 0.9x	` '			00.72	00.72	00.72			00.72	00.72	00.72	00.72	J	(00)
Losses e.g. evaporation (negative values) (Table 5) (71)m=	·	`		3	3	3	3	_	3	3	3	3	1	(70)
(71)m=	` '						<u>`</u>						J	(1-4)
Water heating gains (Table 5) (72)m= 73.37 71.34 67.14 61.43 57.73 52.51 48.07 53.76 55.78 61.69 68.36 71.35 (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 511.81 507.76 488.33 458.25 427.58 400.03 383.87 391.58 408.84 439.11 472.74 498.08 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Table 6a Table 6b Table 6c (W) Southeast 0.9x 0.77 x 4.01 x 36.79 x 0.63 x 0.7 = 45.09 (77) Southeast 0.9x 0.77 x 4.01 x 62.67 x 0.63 x 0.7 = 76.81 (77) Southeast 0.9x 0.77 x 4.01 x 85.75 x 0.63 x 0.7 = 105.09 (77)						-89.82	-80	82	-80 82	-80.82	-80.82	-80 82	1	(71)
(72)m= 73.37 71.34 67.14 61.43 57.73 52.51 48.07 53.76 55.78 61.69 68.36 71.35 (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 511.81 507.76 488.33 458.25 427.58 400.03 383.87 391.58 408.84 439.11 472.74 498.08 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Area May Table 6a Flux Table 6b Table 6c (W) Southeast 0.9x 0.77 x 4.01 x 36.79 x 0.63 x 0.7 = 45.09 (77) Southeast 0.9x 0.77 x 4.01 x 62.67 x 0.63 x 0.7 = 76.81 (77) Southeast 0.9x 0.77 x 4.01 x	` '		00.02	00.02	-00.02	00.02	-00.	02	00.02	00.02	00.02	-03.02	J	()
Total internal gains =		 _	61 43	57 73	52 51	48.07	53.7	76	55.78	61 60	68.36	71 35	1	(72)
(73)m= 511.81 507.76 488.33 458.25 427.58 400.03 383.87 391.58 408.84 439.11 472.74 498.08 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Area Mea Table 6a Flux Table 6b Table 6c FF Gains (W) Southeast 0.9x 0.77	` '	07.14	01.40	01.10		<u> </u>						l .		(12)
Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d m^2 Flux g_{-} FF Gains Table 6b Table 6c (W) Southeast 0.9×0.77 $\times 4.01$ $\times 36.79$ $\times 0.63$ $\times 0.7$ = 45.09 (77) Southeast 0.9×0.77 $\times 4.01$ $\times 62.67$ $\times 0.63$ $\times 0.7$ = 76.81 (77) Southeast 0.9×0.77 $\times 4.01$ $\times 85.75$ $\times 0.63$ $\times 0.7$ = 105.09 (77)		488 33	458 25	427 58	· ·	•	· ·		. ,	, ,	•		1	(73)
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d m^2 Flux g_{-} FF Gains Table 6c (W) Southeast $0.9x$ 0.77 x 4.01 x 36.79 x 0.63 x 0.7 x 4.01 x 62.67 x 0.63 x 0.7 x 6.81 x 7.7 Southeast x 9.7 x 6.81 x 9.7 Southeast x 9.7 x 6.81 x 9.7 x 6.81 x 9.7 Southeast x 9.8 Southeast x 9.7 x 9.63 x 9.7 x 9.63 x 9.7 Southeast x 9.7 South	` '	400.00	430.23	427.30	400.00	300.07	331.	30	+00.04	400.11	712.17	430.00		(1.0)
Orientation: Access Factor Table 6d Area m² Flux Table 6a g_{-} Table 6b FF Table 6c Gains (W) Southeast 0.9x 0.77 x 4.01 x 36.79 x 0.63 x 0.7 = 45.09 (77) Southeast 0.9x 0.77 x 4.01 x 62.67 x 0.63 x 0.7 = 76.81 (77) Southeast 0.9x 0.77 x 4.01 x 85.75 x 0.63 x 0.7 = 105.09 (77)	<u> </u>	ısing solar	flux from	Table 6a	and assoc	ciated equa	itions t	0 CO	nvert to th	e applica	ble orientat	tion.		
Table 6d m² Table 6a Table 6b Table 6c (W) Southeast 0.9x 0.77 x 4.01 x 36.79 x 0.63 x 0.7 = 45.09 (77) Southeast 0.9x 0.77 x 4.01 x 62.67 x 0.63 x 0.7 = 76.81 (77) Southeast 0.9x 0.77 x 4.01 x 85.75 x 0.63 x 0.7 = 105.09 (77)	Orientation: Access Fa	actor	Area		Flu	IX .			g_		FF		Gains	
Southeast 0.9x 0.77	Table 6d		m²		Ta	ble 6a		Ta		Т	able 6c		(VV)	
Southeast 0.9x 0.77 x 4.01 x 85.75 x 0.63 x 0.7 = 105.09 (77)	Southeast 0.9x 0.77	х	4.0)1	x ;	36.79	x		0.63	х	0.7	=	45.09	(77)
5 5 5 5 155.55 (, ,	Southeast 0.9x 0.77	х	4.0)1	x (62.67	x		0.63	×	0.7	=	76.81	(77)
	Southeast 0.9x 0.77	x	4.0)1	x 8	85.75	x		0.63		0.7	=	105.09	(77)
Southeast 0.9x 0.77 x 4.01 x 106.25 x 0.63 x 0.7 = 130.21 (77)	Southeast 0.9x 0.77	x	4.0)1	x 1	06.25	x		0.63	Ī×Ī	0.7		130.21	(77)
Southeast on	Southeast 0.9x 0.77	x	4.0)1	x 1	19.01	x		0.63	x [0.7	=	145.85	(77)
	0.77	X	4.0	<i>'</i> 1	^1	19.01	J * [0.03	^ _	0.7	=	145.85	$J^{(II)}$

		_			_											_
Southeast 0.9x	0.77	X	4.0)1	x	11	8.15	X	0.63	X		0.7		=	144.79	(77)
Southeast 0.9x	0.77	X	4.0)1	x	11	3.91	X	0.63	х		0.7		=	139.6	(77)
Southeast 0.9x	0.77	X	4.0)1	x	10)4.39	X	0.63	х		0.7		=	127.93	(77)
Southeast 0.9x	0.77	X	4.0)1	x	9:	2.85	X	0.63	х		0.7		=	113.79	(77)
Southeast 0.9x	0.77	X	4.0)1	x [6	9.27	X	0.63	X		0.7		=	84.89	(77)
Southeast 0.9x	0.77	X	4.0)1	x	4	4.07	X	0.63	X		0.7		=	54.01	(77)
Southeast 0.9x	0.77	X	4.0)1	x [3	1.49	X	0.63	X		0.7		=	38.59	(77)
Northwest _{0.9x}	0.77	X	7.7	7 2	x [1	1.28	x	0.63	х		0.7		=	26.62	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x [2:	2.97	X	0.63	X		0.7		=	54.19	(81)
Northwest 0.9x	0.77	X	7.7	7 2	x [4	1.38	X	0.63	X		0.7		=	97.63	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x [6	7.96	X	0.63	х		0.7		=	160.33	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x [9	1.35	x	0.63	х		0.7		=	215.52	(81)
Northwest _{0.9x}	0.77	x	7.7	72	x	9	7.38	x	0.63	x		0.7		=	229.76	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	9	1.1	X	0.63	X		0.7		=	214.94	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x	7.	2.63	X	0.63	X		0.7		=	171.35	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	5	0.42	x	0.63	X		0.7		=	118.96	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	2	8.07	x	0.63	X		0.7		=	66.22	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x	1	4.2	x	0.63	X		0.7		=	33.5	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	9).21	x	0.63	X		0.7		=	21.74	(81)
Solar gains in (83) m= $\boxed{71.71}$ Total gains – ii (84) m= $\boxed{583.53}$	130.99 20 nternal and	2.72	290.54	361.36	37 + (8	4.56 3)m , 4.59	354.53	(83)m 299 690	<u>'</u>	5 151.	11	87.5 60.25	60.3 558			(83)
7. Mean inter	nal tempera	ture	(heating	season	1)											
Temperature	during heat	ing p	eriods ir	n the livi	ng a	area f	rom Tab	ole 9	Th1 (°C)						21	(85)
Utilisation fac	tor for gains	for I	iving are	ea, h1,m	ı (se	e Ta	ble 9a)								ı	
Jan	Feb I	Mar	Apr	May	١,	Jun	Jul	Α	ug Sep	0	ct	Nov	D€			
(86)m= 0.99	0.98 0	.97	0.91	0.79	C).6	0.45	0.	5 0.74	0.9	3	0.98	0.9	9		(86)
Mean interna	temperatu	re in I	iving ar	ea T1 (fo	ollov	v ste	os 3 to 7	in T	able 9c)						•	
(87)m= 20.07	20.2 20).42	20.69	20.89	20).98	21	20.	99 20.94	20.6	8 2	0.32	20.0)3		(87)
Temperature	during heat	ing p	eriods ir	n rest of	dwe	elling	from Ta	able 9	9, Th2 (°C))						
(88)m= 20.02	20.02 20	0.02	20.02	20.02	20	0.02	20.02	20.	02 20.02	20.0)2 2	0.02	20.0)2		(88)
Utilisation fac	tor for gains	for r	est of d	welling,	h2,r	n (se	e Table	9a)	-	-	-				•	
(89)m= 0.99		.96	0.88	0.73	1	.52	0.35	0.3	9 0.66	0.9	1	0.98	0.9	9		(89)
Mean interna	l temneratui	re in t	he rest	of dwell	ina '	——і Т2 (fc	ollow ste	ns 3	to 7 in Ta	hle 9c)					l	
(90)m= 19.19	· · · · · · · · · · · · · · · · · · ·	9.53	19.78	19.95	Ť	0.01	20.02	20.				9.44	19.1	5		(90)
	<u> </u>	!		Į		!		<u> </u>		fLA = L		rea ÷ (4	1) =		0.37	(91)
Moon interna	l tomporati ::	ro /fo	r tha wh	olo dura	ء منال	() = ti	Λ Τ4	. /4	fl ۸\ T	·2				ļ		
Mean interna (92)m= 19.52	· · ·	ne (10 9.86	20.12	20.3	_	$\frac{1}{0.37}$	20.38	+ (1 20.		1	2 1	9.77	19.4	18		(92)
Apply adjustn				l	<u> </u>							5.77	L '5.4			(5-)
								٠,		- 12	-					

						1			1	,	1	ı	
(93)m= 19.37		19.71	19.97	20.15	20.22	20.23	20.23	20.19	19.97	19.62	19.33		(93)
8. Space he													
Set Ti to the the utilisation			•		ed at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation f				iviay	Juli	Jui	L	Сер	Oct	INOV	Dec		
(94)m= 0.99		0.95	0.88	0.74	0.54	0.37	0.42	0.68	0.91	0.97	0.99		(94)
Useful gain		. W = (94	1)m x (84	L 4)m	<u> </u>	<u> </u>	<u> </u>			<u> </u>			
(95)m= 575.0	T T	657.15	661.24	583.82	415.85	273.08	287.29	434.15	534.89	545.32	551.85		(95)
Monthly av	erage exte	ernal tem	perature	from Ta	able 8	ļ			ļ	!		l	
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss ra	ate for me	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]			l.	
(97)m= 1136.3	39 1100.86	996.3	834.63	637.34	423.91	273.98	288.96	459.52	706.43	943.97	1140.74		(97)
Space heat	ing requir	ement fo	r each n	nonth, k\	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m= 417.6	2 320.96	252.32	124.84	39.82	0	0	0	0	127.62	287.03	438.14		
					-	-	Tota	l per year	(kWh/yea	r) = Sum(9	8) _{15,912} =	2008.35	(98)
Space heat	ing requir	ement in	kWh/m²	/year								28.7	(99)
9a. Energy r					vetame i	ncluding	micro-C	'HDI					
Space hea		its — Iriui	Mudai II	calling s	y Sterris r	ricidaling	, micro-c) II)					
Fraction of	_	at from s	econdar	v/supple	mentarv	svstem						0	(201)
Fraction of	•				,	-	(202) = 1	- (201) =				1	(202)
	•		-	` ,				02) × [1 –	(203)] =				(204)
Fraction of		_	-				(204) - (2	02) * [1	(200)] =			1	╡゛
Efficiency of	•											90.2	(206)
Efficiency o	f seconda	ry/suppl	ementar	y heating	g systen	າ, %	,					0	(208)
Jar	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space heat		· `		d above))							ı	
417.6	2 320.96	252.32	124.84	39.82	0	0	0	0	127.62	287.03	438.14		
$(211)m = \{[(9)]$	98)m x (20)4)] } x 1	00 ÷ (20)6)	_								(211)
462.9	9 355.83	279.74	138.41	44.15	0	0	0	0	141.49	318.22	485.74		_
							Tota	al (kWh/yea	ar) =Sum(2	211) _{15,1012}	<u></u>	2226.55	(211)
Space heat	ing fuel (s	econdar	y), kWh/	month									
$= \{[(98)m \times ($	201)] } x 1	00 ÷ (20	8)			•			ı			1	
(215)m= 0	0	0	0	0	0	0	0	0	0	0	0		_
							Tota	al (kWh/yea	ar) =Sum(2	215) _{15,1012}	2=	0	(215)
Water heati	•												
Output from												ı	
171.2		157.3	139.86	136.22	120.52	114.61	127.33	127.6	145.08	154.85	166.72		7,0,0
Efficiency of												87.6	(216)
(217)m= 89.43		89.18	88.81	88.17	87.6	87.6	87.6	87.6	88.8	89.27	89.47		(217)
Fuel for wate	•												
(219)m = (6) (219)m = 191.4		176.37	157.48	154.49	137.58	130.84	145.36	145.66	163.38	173.46	186.34		
,	1	1	J		I	L		al = Sum(2		I	L	1930.95	(219)
Annual tota	ls							`		Wh/yeaı	,	kWh/year	
Space heati		ed, main	system	1					,	y cai		2226.55	7
												l	_

Water heating fuel used				4020.05	7
Water heating fuel used	roon hot			1930.95	_
Electricity for pumps, fans and electric k mechanical ventilation - balanced, extr	•	putoido	40.74	1	(230a)
central heating pump:	act of positive input from c	duiside	30	<u> </u> 	(230c)
boiler with a fan-assisted flue			45]]	(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =	45	118.71	(231)
Electricity for lighting				321.08](232)
Total delivered energy for all uses (211)) (221) + (231) + (232) (237h) =		4597.29](338)
10a. Fuel costs - individual heating sys	. , , , , , ,	20.0)		1007120	
5 7	Fuel	Fuel Price		Fuel Cost	
	kWh/year	(Table 12)		£/year	
Space heating - main system 1	(211) x	3.48	x 0.01 =	77.48	(240)
Space heating - main system 2	(213) x	0	x 0.01 =	0	(241)
Space heating - secondary	(215) x	13.19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)	3.48	x 0.01 =	67.2	(247)
Pumps, fans and electric keep-hot	(231)	13.19	x 0.01 =	15.66	(249)
(if off-peak tariff, list each of (230a) to (2 Energy for lighting	230g) separately as applica (232)	able and apply fuel price acco	ording to x 0.01 =	Table 12a 42.35	(250)
Additional standing charges (Table 12)				120	(251)
Appendix Q items: repeat lines (253) ar	nd (254) as needed				_
Total energy cost	(245)(247) + (250)(254) =			322.69	(255)
11a. SAP rating - individual heating sy	stems				
Energy cost deflator (Table 12)				0.42	(256)
Energy cost factor (ECF)	$[(255) \times (256)] \div [(4) + 45.0] =$			1.18	(257)
SAP rating (Section 12)				83.56	(258)
12a. CO2 emissions – Individual heating	ng systems including micro	o-CHP			
	Energy kWh/year	Emission fa kg CO2/kWh		Emissions kg CO2/yea	ar
Space heating (main system 1)	(211) x	0.216	=	480.94	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	417.09	(264)
Space and water heating	(261) + (262) + (2	263) + (264) =		898.02	(265)
Electricity for pumps, fans and electric k	keep-hot (231) x	0.519	=	61.61	(267)
Electricity for lighting	(232) x	0.519	=	166.64	(268)
Total CO2, kg/year		sum of (265)(271) =		1126.27	(272)
CO2 emissions per m ²		(272) ÷ (4) =		16.1	(273)

El rating (section 14) (274)87 13a. Primary Energy **Primary** P. Energy **Energy** kWh/year factor kWh/year (211) x Space heating (main system 1) (261) 1.22 2716.39 (215) x Space heating (secondary) 3.07 0 (263)Energy for water heating (219) x 1.22 2355.76 (264) (261) + (262) + (263) + (264) =Space and water heating (265) 5072.16 Electricity for pumps, fans and electric keep-hot (231) x (267)3.07 364.43 Electricity for lighting (232) x (268)0 985.71 sum of (265)...(271) = 'Total Primary Energy (272)6422.3

 $(272) \div (4) =$

Primary energy kWh/m²/year

(273)

91.79

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 09 September 2024

Property Details: 04-19-75435 PL1 P5 (apt)

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes
Number of storeys: 1

Front of dwelling faces: North West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Medium

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
3 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 166.25 (P1)

Transmission heat loss coefficient: 47.7

Summer heat loss coefficient: 213.95 (P2)

Overhangs:

Orientation: Ratio: Z_overha	ıngs:
------------------------------	-------

North West (Front) 0 1 South East (Rear) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North West (Front)	0.85	0.9	1	0.76	(P8)
South East (Rear)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	g _	FF	Shading	Gains
North West (Front)	0.9 x	7.72	98.85	0.63	0.7	0.76	231.69
South East (Rear)	0.9 x	4.01	119.92	0.63	0.7	0.76	146.01
						Total	377.71 (P3/P4)

Internal gains:

	June	July	August	
Internal gains	397.03	380.87	388.58	
Total summer gains	800.43	758.57	714.34 (P5)	
Summer gain/loss ratio	3.74	3.55	3.34 (P6)	
Mean summer external temperature (Thames valley)	16	17.9	17.8	
Thermal mass temperature increment	0.25	0.25	0.25	
Threshold temperature	19.99	21.7	21.39 (P7)	(P7)
Likelihood of high internal temperature	Not significant	Slight	Slight	

Assessment of likelihood of high internal temperature: Slight