Regulations Compliance Report

	nt L1A, 2013 Edition tember 2024 at 15:56		ma FSAP 2012 program, Ver	rsion: 1.0.5.60
Project Informatio	n:			
Assessed By:	Liam Mason (STR	O033679)	Building Type:	Flat
Dwelling Details:				
NEW DWELLING	AS BUILT		Total Floor Area: 6	9.97m²
Site Reference :	Willingale Road		Plot Reference:	04-19-75435 PL1 P6 (apt)
Address :	2 Middleton Court,	90 Willingale Road, Lought	on, IG10 2DA	
Client Details:				
Name:	Galldris Group			
Address :				
•	s items included witter the second structure to the se	ithin the SAP calculations ions compliance.		
1a TER and DER				
Fuel factor: 1.00 (n Target Carbon Dio	xide Emission Rate	(TER)	16.93 kg/m²	
	ioxide Emission Rat	e (DER)	16.01 kg/m²	OK
1b TFEE and DF		\ \	44 E 4/0/lb/m2	
-	gy Efficiency (TFEE ergy Efficiency (DFE	•	41.5 kWh/m² 35.3 kWh/m²	ОК
2 Fabric U-value	S			
Element		Average	Highest	
External v Floor	vall	0.17 (max. 0.30)	0.17 (max. 0.70)	OK
Roof		(no floor) (no roof)		
Openings		1.29 (max. 2.00)	1.30 (max. 3.30)	ОК
2a Thermal bridg	ging			
		om linear thermal transmitta	ances for each junction	
3 Air permeabilit			0.00	
Maximum	pility at 50 pascals		2.29 10.0	ОК
4 Heating efficie	ncy			
Main Heatin		Brand name: Worcester Model: Greenstar 4000 Model qualifier: GR4700iV (Combi) Efficiency 89.3 % SEDBU Minimum 88.0 %	ors or underfloor heating - ma	ains gas OK
Secondary I	neating system:	None		

Regulations Compliance Report

Hot water Storage:	No cylinder		
-			
Controls			
Space heating controls	Programmer, room therm	lostat and TRVs	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		OK
ow energy lights.			
Percentage of fixed lights w	vith low-energy fittings	100.0%	
Minimum		75.0%	ОК
Aechanical ventilation			
Continuous extract system	(decentralised)		
Specific fan power:	````	0.16 0.18	
Maximum		0.7	ОК
Summertime temperature			
Overheating risk (Thames v	/alley):	Not significant	ОК
ed on:		C C	
Overshading:		Average or unknown	
Windows facing: North Wes	st	7.72m ²	
Windows facing: South Eas		5.35m ²	
Ventilation rate:		6.00	
Blinds/curtains:		Dark-coloured curtain or rolle	er blind
		Closed 100% of daylight hou	ro

10 Key features

Air permeablility

2.3 m³/m²h

SAP Input

Property Details: 04-	19-75435 PL1 F	96 (apt)						
Address: Located in: Region: UPRN:		Engla	ldleton Court, 90 Will Ind nes valley	lingale Road, Lou	ighton, IG10 2D <i>I</i>	Ą		
Date of assessme Date of certificate Assessment type:	e:	09 S€	eptember 2024 eptember 2024 dwelling as built					
Transaction type: Tenure type:			dwelling					
Related party dise Thermal Mass Par Water use <= 12 PCDF Version:	rameter:	Indica	lated party ative Value Medium True					
Property description:	:							
Dwelling type: Detachment:		Flat						
Year Completed: Floor Location:		2024 Eloo	r area:					
				S	Storey height	:		
Floor 0 Living area:			8 m ² (fraction 0.373))	2.4 m			
Front of dwelling factors of the opening types:	ces:	North	i Easi					
Name:	Source:		Туре:	Glazing:		Argon:	Fram	e:
Entrance Front Rear	Manufacturer SAP 2012 SAP 2012	,	Solid Windows Windows		0.05, soft coat 0.05, soft coat	Yes Yes	PVC-U Wood Wood	
Name: Entrance Front	Gap: mm 16mm or	more	Frame Factor 0.7 0.7	: g-value: 0 0.63	U-value: 1.2 1.3	Area: 2.01 7.72	No. o 1 1	f Openings
Rear	16mm or	more	0.7	0.63	1.3	5.35	1	
Name: Entrance Front	Type-Name		Location: Corridor Weatherboard clad	Orient: North West North West		Width: 0 0	Heigh 0 0	nt:
Rear			Weatherboard clad	South East		0	0	
Overshading: Opaque Elements:		Avera	age or unknown					
Opaque Elements:								
Type: G External Elements	iross area:	Openings:	Net area:	U-value:	Ru value:	Curtain	wall:	Карра:
Weatherboard clad Corridor Internal Elements	66.59 14.54	13.07 2.01	53.52 12.53	0.17 0.16	0 0	False False		N/A N/A
Internal wall Party Elements	142							N/A
Party ceiling Party floor	69.97 69.97							N/A N/A
Thermal bridges:								

SAP Input

Thermal bridges:	User-define Length	d (individual F Psi-value		Y-Value = 0.1105
[Approved]	7.07	0.3	E2	Other lintels (including other steel lintels)
[Approved]	0.57	0.04	E3	Sill
[Approved]	24.36	0.05	E4	Jamb
[Approved]	67.04	0.07	E7	Party floor between dwellings (in blocks of flats)
[Approved]	10.08	0.09	E16	Corner (normal)
Ventilation:				
Pressure test:	Yes (As bui			
Ventilation:		ed whole hous		
	Number of Ductwork: ,	fans in Wetroo	om: Kitche	n 1 Other 1
	Approved In	nstallation Sch	eme: True	
Number of chimneys:	0			
Number of open flues:	0			
Number of fans:	0			
Number of passive stacks:	0			
Number of sides sheltered:	3	and dwalling i	e tested)	
Pressure test: Main heating system:	2.29 (Asses	sed dwelling i	s lested)	
	Boilor syste	ms with radiat	ors or up	lerfloor heating
Main heating system:	-	and oil boilers		
	Fuel: mains			
		: Boiler Datab	ase	
	Database: (rev 512, prod	uct index (018907) Efficiency: Winter 87.6 % Summer: 90.2
	Brand name	e: Worcester		
	Model: Gree			
		fier: GR4700iV	V 30 C NG	
	(Combi boil			
	Systems wi			
		ting pump : 2		
	Room-seale	temperature:	UNKNOWN	
	Boiler interl			
	Delayed sta			
Main heating Control:				
Main heating Control:	Programme	r, room therm	lostat and	TRVs
-	Control cod	e: 2106		
Secondary heating system:				
Secondary heating system:	None			
Water heating:				
Water heating:		heating syster	n	
	Water code			
	Fuel :mains	•		
	No hot wate	•		
Others:	Solar panel	Taise		
		100		
Electricity tariff:	Standard Ta	aritt		
In Smoke Control Area:	Unknown	aton		
Conservatory:	No conserva 100%	atol y		
Low energy lights:		oan / suburba	n	
Terrain type: EPC language:	English	Jan / SUDUIDA		
Wind turbine:	No			
	-			

SAP Input

Photovoltaics:	
Assess Zero Carbon Home:	

None No

			User D	etails:						
Assessor Name: Software Name:	Liam Mason Stroma FSAP 20			Softwa	a Num are Ver	sion:		Versio	033679 m: 1.0.5.60	
					04-19-7		_1 P6 (a	pt)		
Address :	2 Middleton Court,	90 Willing	gale Roa	ad, Loug	hton, IG	10 2DA				
1. Overall dwelling dimer	ISIONS:		A	(A 11.	arls (/ ma)		\/ = = (2)	
Ground floor				a(m²) 9.97	(1a) x	Av. He i	1 gnt(m) 4	(2a) =	Volume(m ³) 167.93	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1	e)+(1r	n) 6	9.97	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	167.93	(5)
2. Ventilation rate:	-	_								
Number of chimneys Number of open flues	main heating 0 +	secondar heating 0 0	y] + [_] + [_	0 0] = [total 0 0		40 = 20 =	m ³ per hour	_(6a) _(6b)
Number of intermittent fan				0			× ⁄	10 =	-](²² /](7a)
	3				Ļ	0			0]
Number of passive vents					Ľ	0		10 =	0	(7b)
Number of flueless gas fire	es					0	X 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimney: If a pressurisation test has be	en carried out or is inten				continue fro	0 om (9) to (÷ (5) =	0	(8)
Number of storeys in the Additional infiltration	e dwelling (ns)						[(9)	-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	sent, use the value corre gs); if equal user 0.35	esponding to	the greate	er wall area	a (after	uction			0](11)
If suspended wooden floud in the suspende			T (seale	a), eise	enter U				0	(12)
Percentage of windows									0	(13) (14)
Window infiltration		sinpped		0.25 - [0.2	x (14) ÷ 1	00] =			0	(14)
Infiltration rate					+ (11) + (1		+ (15) =		0	(16)
Air permeability value, c	50, expressed in cu	ibic metre	s per ho	ur per so	quare m	etre of e	nvelope	area	2.2899999618530	=
If based on air permeabilit	y value, then (18) = [(17) ÷ 20]+(8	3), otherwi	se (18) = (16)				0.11	(18)
Air permeability value applies	if a pressurisation test h	as been dor	e or a deg	ıree air pei	meability i	is being us	sed			-
Number of sides sheltered	l			(00) 4 1	0.075 (4	0)]			3	(19)
Shelter factor	and the strength of the strength				0.075 x (1	9)] =			0.78	(20)
Infiltration rate incorporation	-	1		(21) = (18)	(20) =				0.09	(21)
Infiltration rate modified fo	r monthly wind spee Mar Apr May	1	Jul	Aug	Sep	Oct	Nov	Dec		
	- I · I ·		501	Auy	Oeh	001	1100		l	
Monthly average wind species (22)m= 5.1 5 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
	···· ···	0.0	0.0	0.7	т	- 1 .0	7.5	L ^{+.}	l	
Wind Factor (22a)m = (22	- I - I	-							I	
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m		-			
	0.11	0.11	0.11	0.1	0.1	0.08	0.08	0.08	0.09	0.1	0.1	0.1		
		<i>ctive air</i> al ventila	-	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N. (2	3b) = (23a	a) x Fmv (e	equation (1	N5)) , other	wise (23b) = (23a)			0.5	(23b)
								n Table 4h)		, (,			0.5	(23c)
			-	-	-					2h)m + (23h) 🗸 [1 – (23c)	-	(200)
(24a)m=	r			0	0				0				÷ 100]	(24a)
	L	l ed mech:	I anical ve	I	without	L heat rec	L coverv (N	I //V) (24b	l = (22)	I 2h)m + (L 23b)			
(24b)m=				0	0	0			0		0	0		(24b)
	whole h		I tract ver	L	L or positiv	L /e input v	L ventilatio	n from c	L utside	<u> </u>				
,					•	•		c) = (22b		.5 × (23t))			
(24c)m=	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
,					•	•		on from l						
	<u> </u>	1	r <u>í í</u>	r Ì	,	r Ì	<u>,</u>	0.5 + [(2	,	<u> </u>			l	(244)
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
	r	·		· · ·		r i	r i	d) in box	· ,			0.5	l	(05)
(25)m=	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3. He	at losse	s and he	eat loss j	paramete	er:									
ELEN	IENT	Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/	K)	k-value kJ/m²·ł		. X k J/K
Doors		arou	()			2.01	 ×	1.2	= [2.412			X IX	(26)
Windo	ws Type	e 1				7.72	x1.	/[1/(1.3)+	0.04] =	9.54	=			(27)
Windo	ws Type	e 2				5.35		/[1/(1.3)+	0.04] =	6.61	=			(27)
Walls	Type1	66.5	59	13.07	7	53.52	2 X	0.17		9.1				(29)
Walls		14.5		2.01		12.53		0.16		2			$\exists \vdash$	(29)
		elements		2.01		81.13		0.10	I		I			(31)
Party f			,			69.97]			(32a)
Party						69.97]		\dashv	(32b)
	al wall **	e e e e e e e e e e e e e e e e e e e									l I			(32c)
			ows, use e	ffective wi	ndow U-va	142 alue calcul	 lated using	, formula 1,	/[(1/U-valu	ıe)+0.04] a] as given in	paragraph	 1 3.2	(320)
** incluc	le the area	as on both	sides of ir	nternal wal	ls and par	titions								
Fabric	heat los	ss, W/K	= S (A x	U)				(26)(30)	+ (32) =				29.67	(33)
		Cm = S	. ,						((28)	(30) + (32	2) + (32a)	(32e) =	10138.9	(34)
				P = Cm ÷						tive Value			250	(35)
	-	sments wh ad of a de			construct	ion are not	t known pr	ecisely the	indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	K						8.96	(36)
if details	s of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			38.63	(37)
Ventila	ation hea	1		monthly	y		i	1		= 0.33 × (25)m x (5		I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m		L	
(39)m=	66.34	66.34	66.34	66.34	66.34	66.34	66.34	66.34	66.34	66.34	66.34	66.34		
Stroma	FSAP 201	2 Version	: 1.0.5.60	(SAP 9.92)	- http://ww	ww.stroma	.com			Average =	Sum(39)	12 /12=	66.3 ∌ age	<u>e 2 o</u> f <mark>8</mark> 9)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Numbe	er of dav	vs in mo	nth (Tab	le 1a)				-		Average =	Sum(40)₁.	12 /12=	0.95	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
				I									1	
4. Wa	iter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	(-0.0003	349 x (TF	- A -13.9)2)] + 0.(0013 x (⁻	TFA -13		25]	(42)
Reduce	the annua	al average	hot water		5% if the a	welling is	designed	(25 x N) to achieve		se target o		.53		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	·				1	
(44)m=	96.28	92.78	89.28	85.78	82.28	78.78	78.78	82.28	85.78	89.28	92.78	96.28		
_											m(44) ₁₁₂ =		1050.34	(44)
			. <u> </u>	. <u> </u>	· ·	. <u> </u>	. <u> </u>	OTm / 3600		· ·			1	
(45)m=	142.78	124.88	128.86	112.35	107.8	93.02	86.2	98.91	100.1	116.65	127.33	138.28		
lf instant	taneous w	ater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1377.16	(45)
(46)m=	21.42	18.73	19.33	16.85	16.17	13.95	12.93	14.84	15.01	17.5	19.1	20.74]	(46)
· · ·	storage													
Storag	e volum	e (litres)) includir	ng any s	olar or W	WHRS	storage	within sa	ame ves	sel		0		(47)
Otherw Water	vise if no storage	o stored loss:	hot wate	ank in dw er (this ir loss facte	ncludes i	nstantar	neous co	n (47) ombi boil	ers) ente	er '0' in (0]	(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
			-	e, kWh/ye cylinder		or is not	known.	(48) x (49)) =			0	j	(50)
Hot wa	ter stor	age loss		rom Tab								0]	(51)
		from Ta										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
•••		m water (54) in (5	-	e, kWh/yo	ear			(47) x (51)) x (52) x (53) =		0 D		(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0 50), else (5	0		0	0		(56)
-									· · ·				1	()
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
	•	•	,	om Table								0		(58)
							. ,	65 × (41)		r tharms -	votot)			
(moo (59)m=	0 0		rom Tab			solar wat	ter heati	ng and a	cylinde	r thermo	ostat)	0	1	(59)
(59)11=	U	U					0		0			0		(33)

Combi	loss ca	lculated	for eac	h month	(61)m =	(60) ÷ 30	65 × (41))m						
(61)m=	28.44	25.69	28.43	27.51	28.42	2	27.5	28.42	28.42	27.51	28.43	27.52	28.44]	(61)
Total h	eat req	uired for	water h	neating c	alculated	d fo	r eac	h month	(62)m =	= 0.85 × ((45)m +	- (46)m +	(57)m +	- · (59)m + (61)m	
(62)m=	171.22	150.57	157.3	139.86	136.22	12	20.52	114.61	127.33	127.6	145.08	154.85	166.72]	(62)
Solar DH	W input	calculated	using Ap	pendix G o	r Appendi	x H (negati	ve quantity	/) (enter '()' if no sola	r contribu	ution to wate	er heating)	-	
(add a	dditiona	l lines if	FGHRS	and/or	WWHRS	S ap	plies	, see Ap	pendix	G)					
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0]	(63)
Output	from w	ater hea	ter		-							-		-	
(64)m=	171.22	150.57	157.3	139.86	136.22	12	20.52	114.61	127.33	127.6	145.08	154.85	166.72		
		•							Out	put from wa	ater heat	er (annual)	12	1711.89	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´	[0.85	× (45)m	+ (61)r	n] + 0.8 >	(46)n (า + (57)m	+ (59)m	n]	
(65)m=	54.59	47.94	49.96	44.23	42.95	3	7.81	35.76	39.99	40.16	45.89	49.22	53.09]	(65)
inclu	de (57)	m in calo	ulation	of (65)m	only if a	cylir	nder i	s in the c	dwelling	or hot w	ater is	from com	munity h	neating	
	. ,			5 and 5a	-				Ū					Ū	
		ns (Table													
metab	Jan	Feb	Mar	Apr	May	Γ	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m=	134.72	134.72	134.72	<u> </u>	134.72	-	34.72	134.72	134.72	134.72	134.72		134.72	1	(66)
l iahtin	n dains	r (calcula	L ted in A	ppendix	L equat	tion	190	rl9a)a	lso see	I Table 5				1	
(67)m=	44.64	39.65	32.25	24.41	18.25	1	5.41	16.65	21.64	29.04	36.88	43.04	45.89	1	(67)
										see Ta				J	
7001101 (68)m=	294.37	297.42	289.73	273.34	252.65	T	33.21	220.22	217.17	224.87	241.25	261.94	281.38	1	(68)
						_						201.04	201.00	1	()
(69)m=	50.72	50.72	50.72	50.72	L, equa	-	0.72	50.72	50.72	ee Table 50.72	50.72	50.72	50.72	1	(69)
					50.72	<u> </u>	0.72	50.72	50.72	50.72	50.72	50.72	50.72	J	(00)
-		ns gains	<u> </u>	1		1			0					1	(70)
(70)m=	3	3	3	3	3	L	3	3	3	3	3	3	3]	(70)
		r	<u> </u>	ative valu	<u>т ́``</u>	1	,							1	(74)
(71)m=		-89.82	-89.82		-89.82	-8	39.82	-89.82	-89.82	-89.82	-89.82	-89.82	-89.82	J	(71)
		gains (T	· · · · ·	1		-								1	
(72)m=	73.37	71.34	67.14	61.43	57.73	5	2.51	48.07	53.76	55.78	61.69	68.36	71.35		(72)
Total i		gains =	1			-		m + (67)m	ı + (68)m	+ (69)m + ((70)m + ((71)m + (72))m	1	
(73)m=		507.05	487.74	457.81	427.26	39	99.75	383.57	391.19	408.31	438.44	471.97	497.25		(73)
	ar gain														
			0			and			tions to c		ie applica	able orienta	tion.		
Orienta		Access F Table 6d	actor	Area m ²	l		Flu Tal	x ble 6a	-	g_ Table 6b	-	FF Table 6c		Gains (W)	
Coutho	_					1			. —		r				٦
	ast <mark>0.9x</mark>	0.77				x		86.79	×	0.63		0.7	=	60.16	(77)
	ast <mark>0.9x</mark>	0.77			35	x		62.67	×	0.63		0.7	=	102.47	(77)
	ast <mark>0.9x</mark>	0.77	,			x	8	35.75	×	0.63		0.7	=	140.21	(77)
	ast <mark>0.9x</mark>	0.77	>	5.	35	x	1	06.25	×	0.63	_ × [0.7	=	173.72	(77)
Southe	ast <mark>0.9x</mark>	0.77	>	5.	35	x	1	19.01	x	0.63	x	0.7	=	194.59	(77)

Southe	ast <mark>0.9x</mark>	0.77		x	5.3	5	x	1.	18.15	×		0.63	x	0.7		=	193.18	(77)
Southe	ast <mark>0.9x</mark> [0.77		x	5.3	5	x	1.	13.91	x		0.63	×	0.7		=	186.24	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	5.3	5	x	1(04.39	x		0.63	×	0.7		=	170.68	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	5.3	5	x	9	2.85	x		0.63	x	0.7		=	151.82	(77)
Southe	ast <mark>0.9x</mark> [0.77		x	5.3	5	x	6	9.27	x		0.63	×	0.7		=	113.25	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	5.3	5	x	4	4.07	x		0.63	x	0.7		=	72.06	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	5.3	5	x	3	1.49	x		0.63	×	0.7		=	51.48	(77)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	1	1.28	x		0.63	×	0.7		=	26.62	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	2	2.97	×		0.63	x	0.7		=	54.19	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	4	1.38	×		0.63	×	0.7		=	97.63	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	6	7.96	×		0.63	x	0.7		=	160.33	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	9	1.35	×		0.63	x	0.7		=	215.52	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	9	7.38	x		0.63	×	0.7		=	229.76	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	ę	91.1	×		0.63	x	0.7		=	214.94	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	7	2.63	x		0.63	×	0.7		=	171.35	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	5	0.42	×		0.63	x	0.7		=	118.96	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x	2	8.07	×		0.63	x	0.7		=	66.22	(81)
Northwe	est <mark>0.9x</mark>	0.77		x	7.7	2	x		14.2	x		0.63	×	0.7		=	33.5	(81)
Northw	est <mark>0.9x</mark>	0.77		x	7.7	2	x	ę	9.21	x		0.63	x	0.7		=	21.74	(81)
Solar g	ains in	watts, ca	alculate	ed	for each	n month	1			(83)m	n = Sur	m(74)m	.(82)m		·		1	
(83)m=	86.78	156.66	237.83		334.05	410.1		22.94	401.18	342	.03	270.77	179.4	7 105.55	73.2	22		(83)
•		nternal a		-	i	. ,	т`	,							r		I	()
(84)m=	597.79	663.71	725.58	3	791.87	837.36	82	22.69	784.75	733	.22	679.09	617.9	2 577.52	570.	47		(84)
7. Me	an inter	nal temp	eratur	e (heating	seasor	า)											
Temp	erature	during h	eating	pe	eriods ir	n the liv	ng	area f	from Tab	ole 9	, Th1	(°C)					21	(85)
Utilisa	ation fac	tor for g		-	ving are	ea, h1,n	n (s	ee Ta	ble 9a)								I	
	Jan	Feb	Mar	·	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	De	ec		
(86)m=	0.99	0.98	0.95		0.86	0.7	(0.51	0.37	0.4	11	0.65	0.9	0.98	0.9	9		(86)
Mean	interna	l temper	ature i	n li	iving are	ea T1 (f	ollo	w ste	ps 3 to 7	7 in T	able	9c)						
(87)m=	20.28	20.41	20.62		20.83	20.96	2	20.99	21	2	1	20.98	20.81	20.5	20.2	23		(87)
Temp	erature	during h	eating	pe	eriods in	n rest of	dw	elling	from Ta	able 9	9, Th	2 (°C)		·				
(88)m=	20.13	20.13	20.13	÷	20.13	20.13	1	20.13	20.13	20.		20.13	20.13	20.13	20.1	13		(88)
Utilisa	ation fac	tor for g	ains fo	r re	est of d	welling	h2	.m (se	e Table	9a)		ļ		-	•			
(89)m=	0.98	0.97	0.93	T	0.83	0.65	1	0.44	0.3	0.3	34	0.58	0.86	0.97	0.9	9		(89)
										I					1		I	

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	19.48	19.62	19.81	20	20.1	20.12	20.13	20.13	20.12	19.99	19.7	19.44		(90)
			-		-				1	iLA = Livin	g area ÷ (4) =	0.37	(91)
						、 .		<i></i>						-

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m=19.7819.9120.1120.3120.4220.4520.4520.4420.32019.74

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(92)

(93)m=	19.63	19.76	19.96	20.16	20.27	20.3	20.3	20.3	20.29	20.15	19.85	19.59		(93)
. ,		I	uirement		20.21	20.0	20.0	20.0	20.20	20.10	10.00	10.00		
					re obtair	ned at st	ep 11 of	Table 9	b so tha	t Ti m=(76)m an	d re-calc	ulate	
			or gains				00 11 01		o, oo ala	(, , , , , , , , , , , , , , , , , , ,	r o)n an		ulato	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	n:		-	-							
(94)m=	0.98	0.97	0.93	0.83	0.65	0.46	0.31	0.35	0.59	0.87	0.96	0.99		(94)
Usefu		r	, W = (94	r ·	r i		1							
(95)m=	586.69	641.09	672.81	656.21	548.45	375.94	245.43	258.49	401.83	534.51	556.59	562.11		(95)
	<u> </u>	<u> </u>	ernal tem	r <u> </u>		1								(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	1055 rate	986.02	an intern 892.86	al tempe 747.05	568.56	Lm , W = 378.06	=[(39)m : 245.61	x [(93)m 258.85	– (96)m 410.5	633.31	845.74	1000 69		(97)
(97)m=												1020.68		(97)
(98)m=	320.13	231.8	163.71	65.4	14.96	Wh/mon ⁻	11 = 0.02	$\frac{24 \times [(97)]}{0}$)m – (95 0)mj x (4 73.5	208.19	341.18		
(30)11-	520.15	251.0	103.71	00.4	14.50	0	0	÷	l per year				1418.88	(98)
					.,			Tota	i per year	(KVVII/yeai) = Sum(9	0)15,912 =	1410.00	
Spac	e heatin	g require	ement in	kWh/m²	²/year								20.28	(99)
9a. En	ergy rec	quiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
•	e heatir	-			, .									_
						ementary	-						0	(201)
Fract	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fract	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								90.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g systen	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Spac	e heatin	g require	ement (c	alculate	d above)								
	320.13	231.8	163.71	65.4	14.96	0	0	0	0	73.5	208.19	341.18		
(211)m	า = {[(98)m x (20	04)]	00 ÷ (20	06)									(211)
	354.92	256.98	181.5	72.51	16.59	0	0	0	0	81.49	230.81	378.24		
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	; =	1573.04	(211)
Spac	e heatin	g fuel (s	econdar	y), kWh/	month									
= {[(98)m x (20	01)] } x 1	00 ÷ (20)8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u>_</u>	0	(215)
	heating													
Output			ter (calc			400.50	444.04	407.00	407.0	4 45 00	454.05	400.70		
F #isis	171.22	150.57	157.3	139.86	136.22	120.52	114.61	127.33	127.6	145.08	154.85	166.72		
		ater hea	r										87.6	(216)
(217)m=		89.16	88.91	88.41	87.85	87.6	87.6	87.6	87.6	88.46	89.07	89.33		(217)
			. kWh/mo) ÷ (217)											
	191.79	168.87	176.92	158.19	155.06	137.58	130.84	145.36	145.66	164.01	173.85	186.63		
			I	I	I		I				I		1001 70	(219)
								Tota	I = Sum(2)	$19a)_{112} =$			1934.78	(219)
Annua	al totals							Tota	i = Sum(2		Wh/year		1934.78 kWh/yea	
			ed, main	system	1			Tota	i = Sum(2		Wh/year			

Water heating fuel used				1934.78]
Electricity for pumps, fans and electric ke	ep-hot				
mechanical ventilation - balanced, extra	ct or positive input from o	outside	43.71]	(230a)
central heating pump:	30]	(230c)		
boiler with a fan-assisted flue			45]	(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =		118.71	(231)
Electricity for lighting				315.38	(232)
Total delivered energy for all uses (211)	.(221) + (231) + (232)(237b) =		3941.9	(338)
10a. Fuel costs - individual heating syste	ems:				_
	Fuel kWh/year	Fuel Price (Table 12)		Fuel Cost £/year	
Space heating - main system 1	(211) x	3.48	x 0.01 =	54.74	(240)
Space heating - main system 2	(213) x	0	x 0.01 =	0	(241)
Space heating - secondary	(215) x	13.19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)	3.48	x 0.01 =	67.33	(247)
Pumps, fans and electric keep-hot	(231)	13.19	x 0.01 =	15.66	(249)
(if off-peak tariff, list each of (230a) to (23 Energy for lighting	0g) separately as applica	able and apply fuel price acc 13.19	ording to x 0.01 =	Table 12a 41.6	(250)
Additional standing charges (Table 12)				120	(251)
Appendix Q items: repeat lines (253) and	(254) as needed				
	(245)(247) + (250)(254) =			299.33	(255)
11a. SAP rating - individual heating syst	ems				
Energy cost deflator (Table 12)				0.42	(256)
Energy cost factor (ECF)	[(255) x (256)] ÷ [(4) + 45.0] =			1.09	(257)
SAP rating (Section 12)				84.75	(258)
12a. CO2 emissions – Individual heating	systems including micro	D-CHP			
	Energy kWh/year	Emission fa kg CO2/kWł		Emissions kg CO2/yea	ar
Space heating (main system 1)	(211) x	0.216	=	339.78	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	417.91	(264)
Space and water heating	(261) + (262) + (2	263) + (264) =		757.69	(265)
Electricity for pumps, fans and electric ke	ep-hot (231) x	0.519	=	61.61	(267)
Electricity for lighting	(232) x	0.519	=	163.68	(268)
Total CO2, kg/year		sum of (265)(271) =		982.98	(272)
CO2 emissions per m ²		(272) ÷ (4) =		14.05	(273)

EI rating (section 14)			89 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	1919.1 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	2360.43 (264)
Space and water heating	(261) + (262) + (263) + (264) =		4279.53 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	364.43 (267)
Electricity for lighting	(232) x	0 =	968.21 (268)
'Total Primary Energy	sum	of (265)(271) =	5612.17 (272)
Primary energy kWh/m²/year	(272)) ÷ (4) =	80.21 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 09 September 2024

Property Details: 04-19-75435 PL1 P6 (apt)

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overhangs: Thermal mass parameter: Night ventilation: Blinds, curtains, shutters: Ventilation rate during hot weather (ach): Overheating Details:		Flat England Thames valley Yes 1 North East Average or unknown None Indicative Value Medium False Dark-coloured curtain or roller blind 6 (Windows fully open)						
Summer ventilation heat loss coefficient: Transmission heat loss coefficient: Summer heat loss coefficient:		332.5 38.6 371.13				(P1) (P2)		
Overhangs:								
Orientation: North West (Front) South East (Rear) Solar shading:	Ratio: 0 0		Z_overhangs: 1 1					
Solar shading.								
Orientation: North West (Front) South East (Rear)	Z blinc 0.85 0.85	ls:	Solar access: 0.9 0.9	0 1 1	verhangs:	Z summer: 0.76 0.76		(P8) (P8)
Solar gains:								
Orientation North West (Front) South East (Rear)	0.9 x 0.9 x	Area 7.72 5.35	Flux 98.85 119.92	g _ 0.63 0.63	FF 0.7 0.7	Shading 0.76 0.76 Total	Gains 231.69 194.8 426.5	(P3/P4)
Internal gains:								
Internal gains Total summer gains Summer gain/loss ratio Mean summer externa Thermal mass tempera Threshold temperature Likelihood of high int	tempera	ement	-		June 396.75 851.37 2.29 16 0.25 18.54 Not significant	July 380.57 807.06 2.17 17.9 0.25 20.32 Not significant	August 388.19 759.47 2.05 17.8 0.25 20.1 Not sig	(P5) (P6) (P7) nificant
Assessment of likelihood of high internal temperature:				Not significant				