Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.60 Printed on 09 September 2024 at 15:58:23

Project Information:

Assessed By: Liam Mason (STRO033679) **Building Type:** Flat

Dwelling Details:

NEW DWELLING AS BUILT Total Floor Area: 69.97m²

Site Reference: Plot Reference: Willingale Road 04-19-75435 PL1 P7 (apt)

3 Middleton Court, 90 Willingale Road, Loughton, IG10 2DA Address:

Client Details:

Name: Galldris Group

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 21.57 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 19.92 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 65.3 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 51.2 kWh/m²

OK 2 Fabric U-values

Element Average

Highest External wall 0.17 (max. 0.30) 0.17 (max. 0.70) OK Floor (no floor)

Roof 0.18 (max. 0.20) OK 0.18 (max. 0.35) **Openings** 1.29 (max. 2.00) 1.30 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 2.20 OK Maximum 10.0

4 Heating efficiency

Main Heating system: Database: (rev 512, product index 018907):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester Model: Greenstar 4000

Model qualifier: GR4700iW 30 C NG

(Combi)

Efficiency 89.3 % SEDBUK2009

Minimum 88.0 % OK

None Secondary heating system:

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	Programmer, room therm	nostat and TRVs	ок
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		ок
7 Low energy lights			
Percentage of fixed lights w	ith low-eneray fittinas	100.0%	
Minimum	3, 3, 3,	75.0%	ок
8 Mechanical ventilation			
Continuous extract system ((decentralised)		
Specific fan power:	(decentralised)	0.16 0.18	
Maximum		0.7	ок
9 Summertime temperature			
Overheating risk (Thames v	allow):	Not significant	ОК
Based on:	aney).	Not significant	OK
Overshading:		Average or unknown	
Windows facing: North Wes	t	7.72m ²	
Windows facing: North Wes		5.35m ²	
Ventilation rate:	•	6.00	
Blinds/curtains:		Dark-coloured curtain or roller blin	d
Dilliad, dartaille.		Closed 100% of daylight hours	u
		ciccoa i co/o ci dayiigili ilodio	
10 Key features			
Air permeablility		2.2 m³/m²h	
pormodomity			

SAP Input

Property Details: 04-19-75435 PL1 P7 (apt)

Address: 3 Middleton Court, 90 Willingale Road, Loughton, IG10 2DA

Located in: England Region: Thames valley

UPRN:

Date of assessment:

Date of certificate:

Assessment type:

Transaction type:

Tenure type:

09 September 2024

New dwelling as built

New dwelling

Unknown

Related party disclosure:

Thermal Mass Parameter:

No related party
Indicative Value Medium

Water use <= 125 litres/person/day: True

PCDF Version: 512

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2024

Floor Location: Floor area:

Storey height:

Floor 0 69.97 m² 2.4 m

Living area: 26.13 m² (fraction 0.373)

Front of dwelling faces: North East

Opening types:

Name: Source: Type: Glazing: Argon: Frame: PVC-U Solid Manufacturer **Entrance** Front Manufacturer Windows low-E, En = 0.05, soft coat Yes Wood Rear SAP 2012 Windows low-E, En = 0.05, soft coat Yes Wood

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Entrance	mm	0.7	0	1.2	2.01	1
Front	16mm or more	0.7	0.63	1.3	7.72	1
Rear	16mm or more	0.7	0.63	1.3	5.35	1

Type-Name: Location: Orient: Width: Height: Name: North West Corridor **Entrance** Weatherboard clad North West 0 Front 0 Rear Weatherboard clad South East 0

Overshading: Average or unknown

Opaque Elements:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element					_		
Weatherboard clad	66.59	13.07	53.52	0.17	0	False	N/A
Corridor	14.54	2.01	12.53	0.16	0	False	N/A
Roof	69.97	0	69.97	0.18	0		N/A
Internal Elements	<u>S</u>						
Internal wall	142						N/A
Party Elements							
Party floor	69.97						N/A

Thermal bridges

SAP Input

Doi volue

User-defined (individual PSI-values) Y-Value = 0.1059 Thermal bridges: Lanath

	Lengtn	Psi-value		
[Approved]	7.07	0.3	E2	Other lintels (including other steel lintels)
[Approved]	0.57	0.04	E3	Sill
[Approved]	24.36	0.05	E4	Jamb
[Approved]	33.52	0.07	E7	Party floor between dwellings (in blocks of flats)
[Approved]	10.08	0.09	E16	Corner (normal)
	33.52	0.28	E15	Flat roof with parapet

Yes (As built) Pressure test:

Decentralised whole house extract Ventilation:

Number of fans in Wetroom: Kitchen 1 Other 1

Ductwork: ,

Approved Installation Scheme: True

Number of chimneys: 0 Number of open flues: 0 Number of fans: 0 Number of passive stacks: Number of sides sheltered:

Pressure test: 2.2 (Assessed dwelling is tested)

Boiler systems with radiators or underfloor heating Main heating system:

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 512, product index 018907) Efficiency: Winter 87.6 % Summer: 90.2

Brand name: Worcester Model: Greenstar 4000

Model qualifier: GR4700iW 30 C NG

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Room-sealed Boiler interlock: Yes Delayed start

Programmer, room thermostat and TRVs Main heating Control:

Control code: 2106

Secondary heating system: None

From main heating system Water heating:

> Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Standard Tariff Electricity tariff: In Smoke Control Area: Unknown Conservatory: No conservatory

Low energy lights: 100%

Low rise urban / suburban Terrain type:

EPC language: English

SAP Input

Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

		Us <u>er</u> l	Details:										
Assessor Name: Software Name:	Liam Mason Stroma FSAP 2012		Strom Softwa					0033679 on: 1.0.5.60					
		Property				L1 P7 (ap	t)						
Address: 3 Middleton Court, 90 Willingale Road, Loughton, IG10 2DA													
1. Overall dwelling dime	ensions:												
		Are	ea(m²)		Av. He	ight(m)		Volume(m³)	_				
Ground floor			69.97	(1a) x	2	2.4	(2a) =	167.93	(3a)				
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	69.97	(4)									
Dwelling volume				(3a)+(3b)+(3c)+(3d	l)+(3e)+(3	3n) =	167.93	(5)				
2. Ventilation rate:													
	main seconda heating heating	ıry	other		total			m³ per hour	•				
Number of chimneys	0 + 0	+ [0] = [0	x 40) =	0	(6a)				
Number of open flues	0 + 0	- +	0	j = [0	x 20) =	0	(6b)				
Number of intermittent fa	ins			,	0	x 10) =	0	_				
Number of passive vents				F	0	x 10) =	0	☐(7b)				
Number of flueless gas fi				F	0	× 40) =	0	(7c)				
Number of flueless gas in	1163			L	0			U					
							Air ch	anges per ho	ur				
Infiltration due to chimne	ys, flues and fans = (6a)+(6b)+	(7a)+(7b)+	·(7c) =	Г	0	÷	(5) =	0	(8)				
If a pressurisation test has b	peen carried out or is intended, proce	ed to (17),	otherwise o	continue fr	om (9) to (
Number of storeys in the	he dwelling (ns)							0	(9)				
Additional infiltration	OF for atoal or timber frame	O 25 fa	r maaan	, constr	ustion	[(9)-1]]x0.1 =	0	(10)				
	.25 for steel or timber frame or resent, use the value corresponding			•	uction			0	(11)				
deducting areas of opening	ngs); if equal user 0.35								_				
•	floor, enter 0.2 (unsealed) or ().1 (seal	ed), else	enter 0				0	(12)				
If no draught lobby, en								0	(13)				
Window infiltration	s and doors draught stripped		0.25 - [0.2	x (14) ÷ 1	1001 =			0	(14) (15)				
Infiltration rate					12) + (13) +	+ (15) =		0	(16)				
	q50, expressed in cubic metr	es per h	our per s	quare m	etre of e	nvelope a	area	2.2000000476837	╡`				
If based on air permeabil	lity value, then $(18) = [(17) \div 20] +$	(8), otherv	vise (18) = (16)				0.11	(18)				
	es if a pressurisation test has been do	one or a de	egree air pe	rmeability	is being us	sed			_				
Number of sides sheltere Shelter factor	ed		(20) = 1 -	in 075 x (1	19)1 =			3	(19)				
Infiltration rate incorporat	ting shelter factor		(23) = (18)	`				0.78	(20)				
Infiltration rate modified f	•		(= :) (: 0	, n (=0)				0.09	(21)				
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec						
Monthly average wind sp		1	1 .3		1	<u> </u>							
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7						
MI - 1 F- ((00) (5	0)	1	1		1	<u> </u>		ı					
Wind Factor (22a)m = (2.23) m = (2.23)		0.05	1 0 00	4	1.00	1 10	1.40	1					
(22a)m= 1.27 1.25	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18						

ujusteu ii iiiti	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m			_	-	
0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.09	0.09	0.1	0.1		
<i>alculate effe</i> If mechanic		_	rate for t	пе арріі	саріе са	se						0.5	(2
If exhaust air h			endix N, (2	3b) = (23a	a) × Fmv (e	equation (N5)) , othe	wise (23b) = (23a)			0.5	
If balanced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fror	n Table 4h) =	, , ,			0.5	
a) If balance		•	•	_					2h)m + (23h) x [1 – (23c)	-	(
4a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(
b) If balance	ed mecha	anical ve	ntilation	without	heat rec	coverv (I	л ИV) (24b	m = (22)	2b)m + (23b)			
4b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(
c) If whole h	ouse ex	tract ver	tilation o	or positiv	re input v	ventilatio	on from o	utside			!		
,				•	•		c) = (22b		.5 × (23b	o)			
lc)m= 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(
d) If natural	ventilatio	on or wh	ole hous	e positiv	e input	ventilati	on from I	oft	!	!			
if (22b)r	n = 1, the	en (24d)	m = (22l	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]		_	•	
4d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(
Effective air	change	rate - er	iter (24a) or (24b	o) or (24	c) or (24	ld) in box	(25)					
5)m= 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(
. Heat losse	s and he	eat loss r	paramete	er:									
LEMENT	Gros area	SS	Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/		k-value kJ/m²-l		X X k :J/K
oors	urcu	(111)		•	2.01	 x	1.2	 	2.412		10/111 1	` '	.0/1
indows Type	1 د					_	/[1/(1.3)+		9.54	_			
indows Type					7.72	_	/[1/(1.3)+			=			(
					5.35	_		—, ¦	6.61	╡ ,			(
alls Type1	66.5		13.0	7	53.52	_	0.17	_ =	9.1	닠		_	(
alls Type2	14.5		2.01		12.53	_	0.16	= !	2	_		_	
oof	69.9		0		69.97	X	0.18	=	12.59				(
otal area of e	elements	, m²			151.1					_			(
arty floor					69.97	,				[
ternal wall **					142								(
or windows and						ated using	g formula 1	/[(1/U-valu	ie)+0.04] á	as given in	n paragraph	3.2	
include the area				ls and part	titions		(26)(30)	+ (32) -			ı		<u> </u>
abric heat los		•	U)				(20)(30)		(30) + (32	2) . (226)	(220) -	42.26	<u> </u>
eat capacity	`	,	o Cm	T[A] :-	. l. 1/m21/				, , ,	, , ,	(326) =	8669.53	(
nermal mass or design assess	•	•		•			racisaly the		tive Value		able 1f	250	(
n be used inste				CONSTRUCT	ion are not	. KHOWH PI	ecisely lile	inuicative	values of	TIVIT III I	able II		
nermal bridg	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						16	
details of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
otal fabric he	at loss							(33) +	(36) =			58.26	(
entilation hea	at loss ca	alculated	monthly	/		T		(38)m	= 0.33 × ((25)m x (5)	•	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
3)m= 27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71	27.71		(
eat transfer o	coefficier	nt \M/K						(20)m	= (37) + (38/m			
sat transier t		it, vv/ix						(39)111	= (37) + (30)111			

eat loss para	meter (H	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
0)m= 1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23		
umber of day	e in moi	oth (Tabl	la 1a)			•			Average =	Sum(40) ₁ .	12 /12=	1.23	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ing ener	rgy requi	rement:								kWh/ye	ar:	
ssumed occu if TFA > 13.9 if TFA £ 13.9	N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.0	0013 x (⁻	TFA -13.		25		(42)
nnual averag educe the annua ot more that 125	l average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.53		(43
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
ot water usage ir	litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	T	1				
4)m= 96.28	92.78	89.28	85.78	82.28	78.78	78.78	82.28	85.78	89.28	92.78	96.28	4050.24	
nergy content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	Tm / 3600			m(44) ₁₁₂ = ables 1b, 1	L	1050.34	(44
5)m= 142.78	124.88	128.86	112.35	107.8	93.02	86.2	98.91	100.1	116.65	127.33	138.28		
·	-4 14		-f (- m t = m O i m	h /4C		Total = Su	m(45) ₁₁₂ =		1377.16	(45
instantaneous w 6)m= 21.42	18.73	19.33	16.85		13.95	12.93	14.84	1	17.5	19.1	20.74		(46
6)m= 21.42 /ater storage		19.33	10.00	16.17	13.95	12.93	14.04	15.01	17.5	19.1	20.74		(40
torage volum	e (litres)	includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47
community h	_			_			. ,		(0) : ((47)			
therwise if no /ater storage		not wate	er (unis ir	iciudes i	nstantar	ieous co	יווטט וטוויו	ers) ente	er o in ((47)			
i) If manufact		eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48
emperature fa	actor fro	m Table	2b								0		(49
nergy lost fro		•	•				(48) x (49)) =			0		(50
) If manufact ot water stora 			-								0		(51
community h	eating s	ee sectio		`		,					<u> </u>		`
olume factor											0		(52
emperature fa											0		(53
nergy lost fro Enter (50) or (_	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54
/ater storage	, ,	,	or each	month			((56)m = (55) v (41)	m		0		(58
									1				(56
6)m= 0 cylinder contains	0 dedicated	0 d solar sto	0 rage, (57)ı	0 n = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0), else (5	0 7)m = (56)	m where (0 H11) is fro	0 m Appendi	кН	(50
7)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57
rimary circuit	loss (an	nual) fro	m Table	3							0		(58
rimary circuit	loss cal	culated f	or each	month (•	. ,	, ,						
(modified by	factor fi	rom Tabl	le H5 if t	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)			
9)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5

Combiles coloulated for	h		(C4)	(00) . 0	CE (44)	١							
Combi loss calculated for (61)m= 28.44 25.69	28.43	27.51	28.42	(60) ÷ 3	28.42)III 28.4	12	27.51	28.43	27.52	28.44]	(61)
` '						<u> </u>	!					(50) (64)	(01)
Total heat required for w (62)m= 171.22 150.57	157.3	139.86	136.22	120.52	114.61	127.	_	127.6	45)III +	154.85	166.72	(59)m + (61)m]	(62)
` '					<u> </u>								(02)
Solar DHW input calculated us (add additional lines if F									Contribu	uon to wate	er nealing)		
(63)m= 0 0	0	0	0	0	0 0	0		0	0	0	0	1	(63)
Output from water heate			Ů				!					l	()
(64)m= 171.22 150.57	157.3	139.86	136.22	120.52	114.61	127.	33	127.6	145.08	154.85	166.72	1	
(01)111= 1111.22 100.01	107.0	100.00	100.22	120.02	1	<u> </u>				er (annual)	l	1711.89	(64)
Heat gains from water h	eating	k\/\/h/m/	anth 0 24	5 ′ [0 85	5 v (45)m								J` ′
(65)m= 54.59 47.94	49.96	44.23	42.95	37.81	35.76	39.9	_	40.16	45.89	49.22	53.09]	(65)
include (57)m in calcu					ļ.	l .	!				ļ.] posting	()
, ,			•	yiii idei		JWEIII	ii ig i	OI HOL W	alei is i	IOIII COIII	iiiiuiiity i	leating	
5. Internal gains (see		·).										
Metabolic gains (Table 5	b), Watt Mar	s Apr	May	Jun	Jul	Ι	۱,,	Sep	Oct	Nov	Dec	1	
 	134.72	134.72	134.72	134.72	134.72	134.	- 	134.72	134.72	134.72	134.72	•	(66)
Lighting gains (calculate					1	L			104.72	104.72	104.72	J	(00)
(67)m= 44.64 39.65	32.25	24.41	_, equal	15.41	16.65	21.6	_	29.04	36.88	43.04	45.89	l	(67)
` '	!				ļ.					43.04	45.03	J	(01)
Appliances gains (calcu (68)m= 294.37 297.42	289.73	273.34	252.65	233.21	220.22	217.		224.87	241.25	261.94	281.38	1	(68)
` '							!			201.94	201.30	l	(00)
Cooking gains (calculate	ed in Ap	50.72	L, equat	50.72	50.72), aisc 50.7	_	50.72	50.72	50.72	50.72	1	(69)
` '			50.72	50.72	50.72	50.7	/ 2	50.72	50.72	50.72	50.72		(09)
Pumps and fans gains (2		1 2	<u> </u>		2				1	(70)
(70)m= 3 3	3	3	3	3	3	3		3	3	3	3	J	(70)
Losses e.g. evaporation					T 00.00		00 1	00.00	00.00	1 00 00	T 00 00	1	(71)
(71)m= -89.82 -89.82	-89.82	-89.82	-89.82	-89.82	-89.82	-89.	82	-89.82	-89.82	-89.82	-89.82		(71)
Water heating gains (Ta		04.40	F7.70	50.54	1 40 07	T =0 -	1	55.70	04.00	1 00 00	T 74.05	1	(70)
(72)m= 73.37 71.34	67.14	61.43	57.73	52.51	48.07	53.7		55.78	61.69	68.36	71.35		(72)
Total internal gains =	407.74	457.04	407.00		i)m + (67)m	·		` ′	, ,	· · · ·		1	(72)
` '	487.74	457.81	427.26	399.75	383.57	391.	.19	408.31	438.44	471.97	497.25		(73)
6. Solar gains: Solar gains are calculated us	sing solar	flux from	Table 6a	and assoc	ciated equa	ntions t	to co	nvert to th	e applical	hle orientat	tion		
Orientation: Access Fa	•	Area	rabio oa (Flu	·			g_	о арриоа	FF		Gains	
Table 6d	.0.01	m ²			ble 6a		T	able 6b	Т	able 6c		(W)	
Southeast 0.9x 0.77	X	5.3	5	x :	36.79] _x [0.63	x	0.7		60.16	(77)
Southeast 0.9x 0.77	X	5.3		-	62.67	X		0.63		0.7	-	102.47](77)
Southeast 0.9x 0.77	X	5.3			85.75	X		0.63	x [0.7	= =	140.21](77)
Southeast 0.9x 0.77	X	5.3		-	06.25)		0.63		0.7		173.72](77)
Southeast 0.9x 0.77	×	5.3	==	-	19.01	x		0.63		0.7	_	194.59](77)
0.11	^	<u> </u>		· L	10.01	ı " l		0.00	_ ^ L	0.7		107.00	

		_			_		_		_				_
Southeast _{0.9x}	0.77	×	5.3	35	x	118.15	×	0.63	X	0.7	=	193.18	(77)
Southeast _{0.9x}	0.77	X	5.3	35	X	113.91	X	0.63	X	0.7	=	186.24	(77)
Southeast _{0.9x}	0.77	X	5.3	35	X	104.39	X	0.63	X	0.7	=	170.68	(77)
Southeast _{0.9x}	0.77	X	5.3	35	X	92.85	X	0.63	X	0.7	=	151.82	(77)
Southeast _{0.9x}	0.77	X	5.3	35	x	69.27	x	0.63	X	0.7	=	113.25	(77)
Southeast 0.9x	0.77	X	5.3	35	X	44.07	X	0.63	X	0.7	=	72.06	(77)
Southeast 0.9x	0.77	X	5.3	35	x	31.49	X	0.63	X	0.7	=	51.48	(77)
Northwest 0.9x	0.77	X	7.7	7 2	x	11.28	X	0.63	X	0.7	=	26.62	(81)
Northwest 0.9x	0.77	X	7.7	72	x	22.97	x	0.63	X	0.7	=	54.19	(81)
Northwest 0.9x	0.77	X	7.7	7 2	x	41.38	X	0.63	X	0.7	=	97.63	(81)
Northwest _{0.9x}	0.77	x	7.7	72	x	67.96	x	0.63	x	0.7	=	160.33	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x	91.35	x	0.63	x	0.7	=	215.52	(81)
Northwest _{0.9x}	0.77	X	7.7	72	x	97.38	x	0.63	x	0.7	=	229.76	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	91.1	x	0.63	x	0.7	=	214.94	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	72.63	x	0.63	x	0.7	=	171.35	(81)
Northwest _{0.9x}	0.77	x	7.7	7 2	x	50.42	x	0.63	x	0.7	=	118.96	(81)
Northwest _{0.9x}	0.77	x	7.7	' 2	x	28.07	X	0.63	x	0.7	=	66.22	(81)
Northwest _{0.9x}	0.77	X	7.7	7 2	x	14.2	x	0.63	x	0.7	=	33.5	(81)
Northwest _{0.9x}	0.77	x	7.7	72	x	9.21	x	0.63	x	0.7	=	21.74	(81)
Solar gains in $(83)m=$	156.66 23	7.83	334.05	410.1	422.	m , watts	(83)m 342 733		179.4 617.9	7 105.55	73.22 570.47		(83) (84)
7. Mean inter	nal tempera	ature ((heating	season)								
Temperature	during heat	ing p	eriods ir	n the livi	ng ar	ea from Ta	ble 9	, Th1 (°C)				21	(85)
Utilisation fac	tor for gains	s for I	iving are	ea, h1,m	(see	Table 9a)						•	
Jan	Feb I	Mar	Apr	May	Ju	n Jul	A	ug Sep	Oct	Nov	Dec		
(86)m= 0.99	0.98 0	.97	0.92	0.81	0.6	3 0.47	0.5	0.77	0.94	0.98	0.99		(86)
Mean_interna	l temperatu	re in I	iving are	ea T1 (fo	ollow	steps 3 to	7 in T	able 9c)					
(87)m= 19.88	20.03 20	0.28	20.59	20.84	20.9	6 20.99	20.	99 20.9	20.59	20.17	19.84		(87)
Temperature	during heat	ing p	eriods ir	n rest of	dwell	ing from Ta	able 9	9, Th2 (°C)					
(88)m= 19.9	19.9 1	9.9	19.9	19.9	19.	9 19.9	19	.9 19.9	19.9	19.9	19.9		(88)
Utilisation fac	tor for gains	s for r	est of d	wellina.	h2.m	(see Table	9a)	•		-		•	
(89)m= 0.99		.96	0.89	0.75	0.5	`	0.4	11 0.68	0.91	0.98	0.99		(89)
Mean interna	l temneratu	re in t	the rest	of dwell	ina Tí	(follow st	ens 3	to 7 in Tah	le 9c)				
(90)m= 18.9		9.29	19.58	19.79	19.8	<u> </u>	19.		19.59	19.19	18.86		(90)
. ,		!		<u> </u>						/ing area ÷ (4) =	0.37	(91)
Moon interes	l tomporat:	ro /fo	r tha we	olo dura	llina\	_ fl	. /4	fl A\ TO					
Mean interna (92)m= 19.27		re (10 9.66	19.96	20.18	111ng) 20.2	ì	+ (1		19.96	19.56	19.22		(92)
Apply adjustr				l							10.22		(0-)
							,	5 5 6 6 1	-				

			1	1	1	1					1	ı	
(93)m= 19.1		19.51	19.81	20.03	20.13	20.15	20.15	20.09	19.81	19.41	19.07		(93)
8. Space h													
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a													
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation f		<u> </u>	<u> </u>	Iviay	<u> </u>	<u> </u>	_ /wg	Гоор		1101	500		
(94)m= 0.99	 	0.95	0.89	0.76	0.56	0.39	0.43	0.7	0.91	0.97	0.99		(94)
Useful gair	ns, hmGm	, W = (9 ⁴	4)m x (8	4)m	ļ	<u>!</u>			<u>!</u>			l	
(95)m= 589.0	08 647.36	690.29	703.5	633.52	460.37	303.52	318.93	473.38	563.22	562.42	563.67		(95)
Monthly av	erage exte	ernal tem	perature	from Ta	able 8								
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss r	ate for me	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]	-		•	
(97)m= 1274	.1 1235.18	1118.46	937.53	716.41	475.75	305.61	322.56	515.2	791.76	1057.87	1278.78		(97)
Space hea		1	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m	1		
(98)m= 509.6	395.01	318.56	168.5	61.67	0	0	0	0	170.03	356.72	532.04		_
							Tota	l per year	(kWh/yea	r) = Sum(9	8) _{15,912} =	2512.19	(98)
Space hea	ting requir	ement in	kWh/m²	² /year								35.9	(99)
9a. Energy i	requireme	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space hea	iting:					J		,					
Fraction of	space hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fraction of	space hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fraction of	total heati	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Efficiency of	of main spa	ace heat	ing syste	em 1								90.2	(206)
Efficiency of	•		• .		a system	n %						0	(208)
Jai		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	۱` ′
Space hea		I	<u> </u>		L	<u> </u>	/lug	ССР	000	1407	_ D00	KVVIII y CC	A 1
509.6	- i	318.56	168.5	61.67	0	0	0	0	170.03	356.72	532.04		
(211)m = {[(98)m x (20)4)]	00 ÷ (20	L)6)	ļ	ļ	<u>!</u>		<u> </u>	<u>!</u>			(211)
565.0	_ i _ ` _	353.17	186.81	68.37	0	0	0	0	188.51	395.48	589.85		(=)
							Tota	l ıl (kWh/yea	er) =Sum(2		<u></u>	2785.14	(211)
Space hea	tina fuel (s	econdar	v) kWh/	month									
$= \{[(98)m \ x]$	• ,		• •										
(215)m= 0	0	0	0	0	0	0	0	0	0	0	0		
		•					Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	-	0	(215)
Water heati	ing												_
Output from	water hea	ter (calc	ulated a	bove)						-			
171.2	22 150.57	157.3	139.86	136.22	120.52	114.61	127.33	127.6	145.08	154.85	166.72		_
Efficiency of	water hea	ater										87.6	(216)
(217)m= 89.5	3 89.47	89.32	89	88.39	87.6	87.6	87.6	87.6	88.98	89.4	89.57		(217)
Fuel for wat	-												
(219)m = (6)				154.11	127 50	130.84	1/5 26	145.66	163.04	172.00	186.14		
(219)m= 191.2	168.29	176.1	157.14	104.11	137.58	130.84	145.36 Tota	145.66 al = Sum(2)		173.22	100.14	1000 70	7(240)
Annual tata	No.						1018	– Juiii(2		\ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1928.73	(219)
Annual total Space heati		ed, main	system	1					K	Wh/year		kWh/year 2785.14	7
	5	,											_

					7
Water heating fuel used				1928.73	_
Electricity for pumps, fans and electric k	·			1	(222.)
mechanical ventilation - balanced, extra	act or positive input from o	outside	43.71]	(230a)
central heating pump:			30] 1	(230c)
boiler with a fan-assisted flue		sum of (230a)(230g) =	45		(230e)
Total electricity for the above, kWh/year		sum or (250a)(250g) =		118.71	(231)
Electricity for lighting	(004) - (004) - (000) - (0	2075)		315.38	(232)
Total delivered energy for all uses (211)	, , , , , , ,	2370) =		5147.95	(338)
10a. Fuel costs - individual heating sys					
	Fuel kWh/year	Fuel Price (Table 12)		Fuel Cost £/year	
Space heating - main system 1	(211) x	3.48	x 0.01 =	96.92	(240)
Space heating - main system 2	(213) x	0	x 0.01 =	0	(241)
Space heating - secondary	(215) x	13.19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)	3.48	x 0.01 =	67.12	(247)
Pumps, fans and electric keep-hot	(231)	13.19	x 0.01 =	15.66	(249)
(if off-peak tariff, list each of (230a) to (2 Energy for lighting	(232) separately as application	able and apply fuel price acco	ording to - x 0.01 =	Table 12a 41.6	(250)
Additional standing charges (Table 12)				120	(251)
Appendix Q items: repeat lines (253) an	d (254) as needed				_
Total energy cost	(245)(247) + (250)(254) =			341.3	(255)
11a. SAP rating - individual heating sys	stems				
Energy cost deflator (Table 12)				0.42	(256)
Energy cost factor (ECF)	$[(255) \times (256)] \div [(4) + 45.0] =$			1.25	(257)
SAP rating (Section 12)				82.61	(258)
12a. CO2 emissions – Individual heatir	ng systems including micro	o-CHP			
	Energy kWh/year	Emission fa kg CO2/kWh		Emissions kg CO2/yea	ır
Space heating (main system 1)	(211) x	0.216	=	601.59	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	416.6	(264)
Space and water heating	(261) + (262) + (2	263) + (264) =		1018.19	(265)
Electricity for pumps, fans and electric k	eep-hot (231) x	0.519	=	61.61	(267)
Electricity for lighting	(232) x	0.519	=	163.68	(268)
Total CO2, kg/year		sum of (265)(271) =		1243.48	(272)
CO2 emissions per m ²		(272) ÷ (4) =		17.77	(273)

El rating (section 14) (274)86 13a. Primary Energy **Primary** P. Energy **Energy** kWh/year factor kWh/year (211) x Space heating (main system 1) (261) 1.22 3397.87 (215) x Space heating (secondary) 3.07 0 (263)Energy for water heating (219) x 1.22 2353.05 (264) (261) + (262) + (263) + (264) =Space and water heating (265)5750.91 Electricity for pumps, fans and electric keep-hot (231) x (267)3.07 364.43 Electricity for lighting (232) x (268)0 968.21 sum of (265)...(271) = 'Total Primary Energy (272)7083.55 Primary energy kWh/m²/year $(272) \div (4) =$

(273)

101.24

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 09 September 2024

Property Details: 04-19-75435 PL1 P7 (apt)

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes Number of storeys: 1

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Medium

Night ventilation: False

Blinds, curtains, shutters: Dark-coloured curtain or roller blind

Ventilation rate during hot weather (ach): 6 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 332.5 (P1)

Transmission heat loss coefficient: 58.3

Summer heat loss coefficient: 390.76 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

North West (Front) 0 1 South East (Rear) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North West (Front)	0.85	0.9	1	0.76	(P8)
South East (Rear)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	g _	FF	Shading	Gains
North West (Front)	0.9 x	7.72	98.85	0.63	0.7	0.76	231.69
South East (Rear)	0.9 x	5.35	119.92	0.63	0.7	0.76	194.8
						Total	426.5 (P3/P4)

Internal gains.

	June	July	August
Internal gains	396.75	380.57	388.19
Total summer gains	851.37	807.06	759.47 (P5)
Summer gain/loss ratio	2.18	2.07	1.94 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	18.43	20.22	19.99 (P7)
Likelihood of high internal temperature	ihood of high internal temperature Not significant Not significant		Not significant

Assessment of likelihood of high internal temperature: Not significant