Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 *Printed on 10 March 2021 at 10:02:09*

Project Information	on:			
Assessed By:	Natalie King (STR	O034719)	Building Type:	Semi-detached House
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 9	5.04m²
Site Reference :	Lavant View - The	Spires, Chichester	Plot Reference:	068 Tweed [Semi] DCC2
Address :	Tweed			
Client Details:				
Name: Address :	Redrow Homes So	outhern Counties Limited		
•	s items included w te report of regulat	ithin the SAP calculations. ions compliance.		
1a TER and DER				
	ing system: Mains ga	as		
Fuel factor: 1.00 (r	nains gas) oxide Emission Rate		17.23 kg/m²	
-	Dioxide Emission Rat		16.19 kg/m ²	ОК
1b TFEE and DF			lone kg/m	
Target Fabric Ener	rgy Efficiency (TFEE)	49.4 kWh/m²	
Dwelling Fabric Er	nergy Efficiency (DFE	EE)	42.4 kWh/m ²	
				OK
2 Fabric U-value	S			
Element	- 11	Average	Highest	01/
External v Party wal		0.28 (max. 0.30) 0.00 (max. 0.20)	0.28 (max. 0.70)	OK OK
Floor	I	0.12 (max. 0.25)	- 0.12 (max. 0.70)	OK
Roof		0.12 (max. 0.20)	0.21 (max. 0.35)	ОК
Openings	5	1.22 (max. 2.00)	1.50 (max. 3.30)	ОК
2a Thermal bridg	ging			
	oridging calculated u e: Measured	sing user-specified y-value of	0.15	
3 Air permeabilit				
	bility at 50 pascals		5.01 (design valu	ne)
Maximum			10.0	OK
4 Heating efficie	ncy			
Main Heatir	ıg system:	Database: (rev 473, product Boiler systems with radiator Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35 (Combi) Efficiency 89.6 % SEDBUK Minimum 88.0 %	rs or underfloor heating - ma	ains gas OK
				UN

Regulations Compliance Report

	Secondary heating system:	None		
5 Cy	linder insulation			
	Hot water Storage:	No cylinder		
6 Cc	ontrols			
	Space heating controls Hot water controls:	Programmer, room thermostat and No cylinder thermostat No cylinder	d TRVs	ок
	Boiler interlock:	Yes		OK
7 Lo	ow energy lights			
	Percentage of fixed lights with lo Minimum	w-energy fittings	100.0% 75.0%	ОК
8 Me	echanical ventilation			
	Not applicable			
9 Sı	Immertime temperature			
Base	Overheating risk (South East En	gland):	Not significant	ОК
Dutt	Overshading: Windows facing: South East Windows facing: North West Windows facing: North East Ventilation rate: Blinds/curtains:		Average or unknown 5.65m² 3.93m² 1.44m² 8.00 None	
10 K	Key features			
	Thermal bridging Doors U-value Roofs U-value Party Walls U-value Floors U-value		0.035 W/m²K 1.1 W/m²K 0.11 W/m²K 0 W/m²K 0.12 W/m²K	

Code for Sustainable Homes Report

For use with Nov 2010 addendum 2014 England

Assessor and House	Details			
Assessor Name: Property Address:	Natalie King Tweed	Assessor Number:	STRO034719	
Buiding regulation as	sessment			
			kg/m²/year	
TER			17.23	
DER			16.19	
ENE 1 Assessment - I	Dwelling Emission Rate			

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		16.19	(ZC1)
TER		17.23	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		16.19	
% improvement DER/TER	6		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	16.19	(ZC1)
CO2 emissions from appliances, equation (L14)	15.41	(ZC2)
CO2 emissions from cooking, equation (L16)	1.93	(ZC3)
Net CO2 emissions	35.3	(ZC8)

Result:

Credits awarded for ENE 1 = 1

Code Level = 3

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 42.43

Credits awarded for ENE 2 = 7.9

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	L
Standard Case CO2 emissions		35.27	
Standard DER		17.93	
Actual Case CO2 emissions		35.27	
Actual DER		17.93	
Reduction in CO2 emissions	0		

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

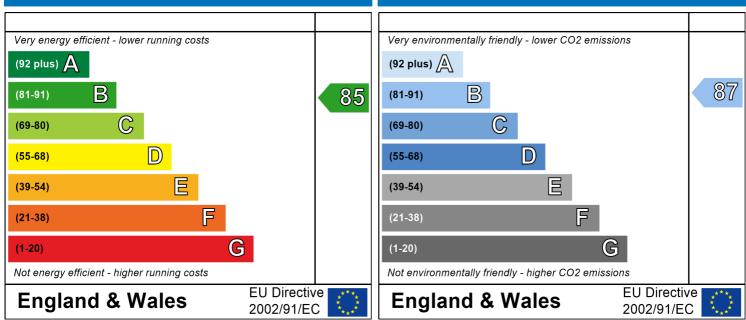
• Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Tweed


Dwelling type: Date of assessment: Produced by: Total floor area: Semi-detached House 15 May 2017 Natalie King 95.04 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

- oporty Details. 00	8 Tweed [Semi] DCC2					
Address:		Tweed				
Located in:		England				
Region:		South East England				
UPRN:						
Date of assessme	ent:	15 May 2017				
Date of certificat	e:	10 March 2021				
Assessment type		New dwelling design st	age			
Transaction type	:	New dwelling				
Tenure type:		Unknown				
Related party dis		Employed by the profes	ssional dealing with	the property tra	insaction	
Thermal Mass Pa		Calculated 146.16				
	25 litres/person/c					
PCDF Version:		473				
Property description	:					
Dwelling type:		House				
Detachment:		Semi-detached				
Year Completed:		2021				
Floor Location:		Floor area:				
FIOOR LOCATION:		FIOUL ALEA:	c	torov bolabt		
		47.50 2		Storey height		
Floor 0		47.52 m ²		2.31 m		
Floor 1		47.52 m ²		2.61 m		
Living area:		15.19 m ² (fraction 0.1	6)			
Front of dwelling fa	ices:	South East				
Opening types:						
Name:	Source:	Type:	Glazing:		Argon:	Frame:
Door	Manufacturer	Solid		0.2, hard coat	Yes	PVC-U
Rear	Manufacturer	Half glazed	low-E, En =	0.2, hard coat	Yes	PVC-U
		-				
Front	Manufacturer	Windows	low-E, En =	0.2, hard coat	Yes	
Rear	Manufacturer	Windows Windows	low-E, En = low-E, En =	0.2, hard coat	Yes	
		Windows	low-E, En = low-E, En =			
Rear	Manufacturer	Windows Windows Windows	low-E, En = low-E, En =	0.2, hard coat	Yes	No. of Openings:
Rear Side	Manufacturer Manufacturer	Windows Windows Windows Frame Fact	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72	0.2, hard coat 0.2, hard coat U-value: 1.1	Yes Yes Area: 2.06	No. of Openings: 1
Rear Side Name: Door Rear	Manufacturer Manufacturer Gap: 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5	Yes Yes Area: 2.06 1.91	No. of Openings: 1 1
Rear Side Name: Door Rear Front	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2	Yes Yes Area: 2.06 1.91 5.65	1 1 1
Rear Side Name: Door Rear Front Rear	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93	1 1 1 1
Rear Side Name: Door Rear Front	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2	Yes Yes Area: 2.06 1.91 5.65	1 1 1
Rear Side Name: Door Rear Front Rear Side	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7 0.7 0.7 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44	1 1 1 1
Rear Side Name: Door Rear Front Rear Side Name:	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 mm 0.7 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93	1 1 1 1
Rear Side Name: Door Rear Front Rear Side Name: Door	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0	1 1 1 1 Height:
Rear Side Name: Door Rear Front Rear Side Name: Door Rear	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factors mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width:	1 1 1 1 Height: 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factors mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0	1 1 1 1 1 Height: 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factors mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0	1 1 1 1 1 Height: 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side Side	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factors mm 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side Overshading: Opaque Elements:	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Fact mm 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 Orient: South East North West South East North West North West	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side Overshading: Opaque Elements:	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Windows Windows Windows Frame Factor mm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side Overshading: Opaque Elements:	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more Type-Name:	Windows Windows Windows Frame Fact mm 0.7 0.7 0.7 0.7 0.7 Uccation: Walls Walls Walls Walls Walls Walls Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 Orient: South East North West South East North West North West	0.2, hard coat 0.2, hard coat U-value: 1.1 1.5 1.2 1.2 1.2 1.2	Yes Yes Area: 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0	1 1 1 1 1 Height: 0 0 0 0 0
Rear Side Name: Door Rear Front Rear Side Name: Door Rear Front Rear Side Overshading: Opaque Elements: Type: Catternal Elements	Manufacturer Manufacturer Gap: 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more Type-Name:	Windows Windows Windows Frame Fact mm 0.7 0.7 0.7 0.7 0.7 0.7 Uccation: Walls	low-E, En = low-E, En = low-E, En = tor: g-value: 0.72 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	0.2, hard coat 0.2, hard coat 1.1 1.5 1.2 1.2 1.2 1.2 1.2	Yes Yes 2.06 1.91 5.65 3.93 1.44 Width: 0 0 0 0 0	1 1 1 1 Height: 0 0 0 0 0 0

SAP Input

Floor	47.52	0.12	75
Internal Elements			
Block	36.96		34
Stud	164.14		9
Ceiling	47.52		9
Floor	47.52		18
Party Elements			
Party Wall	42.75		48

Thermal bridges:

Thermal bridges:									
Thermal bridges:	User-defined (individual PSI-values) Y-Value = 0.0347 Length Psi-value								
	11.87	0.236	E1	Steel lintel with perforated steel base plate					
	9.98	0.230	E3	Sill					
	25.8	0.005	E4	Jamb					
	19.62	0.089	E5	Ground floor (normal)					
	19.62	-0.002	E6	Intermediate floor within a dwelling					
	9.46	0.041	E18	Party wall between dwellings					
	9.46	0.051	E16	Corner (normal)					
	19.62	0.017	E10	Eaves (insulation at rafter level)					
	8.74	0.043	P1	Ground floor					
	8.13	0.035	P4	Roof (insulation at ceiling level)					
	0.68	0.058	P5	Roof (insulation at rafter level)					
Ventilation:									
Pressure test:	Yes (As des	igned)							
Ventilation:	Natural ven	tilation (extrac	t fans)						
Number of chimneys:	0								
Number of open flues:	0								
Number of fans:	2								
Number of passive stacks:	0								
Number of sides sheltered:	2								
Pressure test:	5.01								
Main heating system:									
Main heating system:	Gas boilers Fuel: mains Info Source Database: (Brand name Model: LOG Model qualif (Combi boile Systems wit Central heat	and oil boilers gas : Boiler Databa rev 473, produ : Ideal IC COMBI fier: ESP1 35 er) h radiators ting pump : 20 temperature: pock: Yes	ise ict index (13 or late	derfloor heating D17929) Efficiency: Winter 87.3 % Summer: 90.5 er ow temperature >45°C					
Main heating Control:									
Main heating Control:	Programme Control code	r, room thermo e: 2106	ostat and	TRVs					
Secondary heating system:									
Secondary heating system:	None								
Water heating:									
Water beating:	From main I	nanting system							

Water heating:

From main heating system

SAP Input

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home: Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No None No

					User D	Details:						
Assessor Name Software Name:		italie Kin oma FS	0		ronorte		a Num are Vei	0034719 on: 1.0.5.33				
Address :	Tw	eed		P	openy	Address	. 000 I W	eea [Se		-Ζ		
1. Overall dwelling												
		13.			۸ro	a(m²)		Av. Hei	iaht(m)		Volume(m ³)	
Ground floor						. ,	(1a) x		.31	(2a) =	109.77	(3a)
First floor						47.52	(1b) x		.61	(2b) =	124.03	(3b)
Total floor area TFA	= (1a)+(1	b)+(1c)+	(1d)+(1e	e)+(1n	I) [95.04	(4)	L		J		
Dwelling volume							(3a)+(3b)+(3c)+(3d)+(3e)+	.(3n) =	233.8	(5)
2. Ventilation rate:												
		main heating		econdar leating	у	other		total			m ³ per hour	
Number of chimneys		0	+	0	+	0	=	0	x 4	40 =	0	(6a)
Number of open flue	s [0	_ + _	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermitte	nt fans							2	x 1	10 =	20	(7a)
Number of passive v	ents							0	x 1	10 =	0	(7b)
Number of flueless g	as fires							0	x 4	40 =	0	(7c)
										Air cł	nanges per hou	r
Infiltration due to chin							continue fr	20 om (9) to (÷ (5) =	0.09	(8)
Number of storeys				,				(-) (,		0	(9)
Additional infiltration									[(9)-	-1]x0.1 =	0	(10)
Structural infiltration	n: 0.25 fo	or steel o	r timber f	frame or	0.35 fo	r masoni	ry constr	ruction			0	(11)
if both types of wall deducting areas of c				ponding to	the grea	ter wall are	ea (after					
If suspended wood		•		ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby	, enter 0.	05, else e	enter 0								0	(13)
Percentage of wine	dows and	doors dr	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate						(8) + (10)					0	(16)
Air permeability va		•			•	•	•	etre of e	nvelope	area	5.01000022888184	(17)
If based on air perme	-										0.34	(18)
Air permeability value a Number of sides she		pressurisatio	on test has	s been don	e or a de	gree air pe	rmeability	is being us	sed			(40)
Shelter factor	llered					(20) = 1 -	[0.075 x (1	9)] =			2 0.85	(19) (20)
Infiltration rate incorp	orating sl	helter fac	tor			(21) = (18) x (20) =				0.29	(21)
Infiltration rate modif	-			ł								1` '
Jan Feb	1	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average win	d speed f	rom Tabl	e 7								=	
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7]	

actor (2	22a)m =	(22)m ÷	4									
1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	
d infiltra	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m				
0.36	0.36	0.35	0.31	0.31	0.27	0.27	0.26	0.29	0.31	0.32	0.34	
		-	rate for t	the appli	cable ca	ise		-			 Г	
			endix N. (2	23b) = (23a	a) x Fmv (e	equation (N5)) . othe	rwise (23t	(23a) = (23a)		L	0 (23a) 0 (23b)
	• •	0 11		, (, ,		,,,,	``	-, (,		L	0 (23c)
			-	-					2b)m + ((23b) x l	L 1 – (23c)	
0	0	0	0	0	0	0	0	0	0	0	0	(24a)
balance	d mech	anical ve	entilation	without	heat red	covery (и MV) (24t)m = (2	2b)m + (23b)	11	
0	0	0	0	0	0	0	0	0	0	0	0	(24b)
vhole h	ouse ex	tract ver	ntilation of	or positiv	/e input v	ventilati	on from o	outside	•	•	·	
(22b)n	n < 0.5 >	< (23b), t	then (24	c) = (23b	o); other	wise (24	lc) = (22	b) m + 0	.5 × (23k	o)		
0	0	0	0	0	0	0	0	0	0	0	0	(24c)
									0.5]			
0.57	0.56	0.56	0.55	0.55	0.54	0.54	0.53	0.54	0.55	0.55	0.56	(24d)
tive air	change	rate - er	nter (24a	u) or (24) or (24	L c) or (24	4d) in bo	x (25)	1	1	1	
0.57	0.56	0.56	0.55	0.55	0.54	0.54	0.53	0.54	0.55	0.55	0.56	(25)
0.0.		0.00	0.00	0.00	0.54	0.54	0.55	0.0.	0.00	0.00	0.50	(=0)
					0.04	0.04	0.00		0.00	0.00	0.50	()
		eat loss ss	paramete Openin m	er: ngs	Net Ar A ,r	rea	U-val W/m2	ue	A X U (W/	I	k-value kJ/m²-K	A X k
at losse	s and he Gros	eat loss ss	i parameto Openin	er: ngs	Net Ar	rea m²	U-val	ue	A X U	K)	k-value	A X k
at losse: ENT	s and he Gros	eat loss ss	i parameto Openin	er: ngs	Net Ar A ,r	rea m² ×	U-val W/m2	ue 2K	A X U (W/	к)	k-value	A X k kJ/K
t losse ENT Гуре 1	s and he Gros area	eat loss ss	i parameto Openin	er: ngs	Net Ar A ,r 2.06	rea m ² x	U-val W/m2	ue 2K = =	A X U (W/ 2.266	к)	k-value	A X k kJ/K (26)
t losse ENT Type 1 Type 2	s and he Gros area	eat loss ss	i parameto Openin	er: ngs	Net Ar A ,r 2.06	rea m ² × x ×	U-val W/m2 1.1 1.5	ue 2K = = .0.04] =	A X U (W/ 2.266 2.865	к)	k-value	A X k kJ/K (26) (26)
t losse ENT Type 1 Type 2 vs Type	s and he Gros area	eat loss ss	i parameto Openin	er: ngs	Net Ar A ,r 2.06 1.91 5.65	rea m ² × 	U-val W/m2 1.1 1.5 1/[1/(1.2)+	ue 2K = = = = • 0.04] =	A X U (W/ 2.266 2.865 6.47	к)	k-value	A X k kJ/K (26) (26) (27)
nt losse ENT Fype 1 Fype 2 vs Type vs Type	s and he Gros area	eat loss ss	i parameto Openin	er: ngs	Net Ar A ,r 2.06 1.91 5.65 3.93	rea m ² × x × x × x ×	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+	ue 2K = = = = • 0.04] = • 0.04] =	A X U (W/ 2.266 2.865 6.47 4.5	к)	k-value	A X k kJ/K (26) (26) (27) (27)
nt losse ENT Fype 1 Fype 2 vs Type vs Type	s and he Gros area	aat loss j ss (m²)	i parameto Openin	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44	rea m ² × x × x × x ×	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+	ue 2K = = = = • 0.04] = • 0.04] =	A X U (W/ 2.266 2.865 6.47 4.5 1.65	K)	k-value kJ/m²·K	A X k kJ/K (26) (26) (27) (27) (27)
nt losse ENT Fype 1 Fype 2 vs Type vs Type	s and he Gros area 4 1 4 2 4 3	at loss ss (m ²)	paramet Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52	rea m ² × x × x × x × x ×	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12	ue 2K = = • 0.04] = • 0.04] = • 0.04] = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024	K)	k-value kJ/m²·K	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27)
nt losse ENT Type 1 Type 2 vs Type vs Type vs Type	s and he Gros area 4 1 4 2 4 3	at loss ss (m ²)	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.49	rea m ² × x × x × x × x × x ×	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28	ue 2K = = = = • 0.04] = • 0.04] = • 0.04] = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26	K)	k-value kJ/m²-K	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27) (27) (27
It losse ENT Fype 1 Fype 2 vs Type vs Type vs Type ype1 ype2	s and he Gros area 9 1 9 2 9 3 94.4 42.5	48 53 7	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.49 42.53	rea m ² x x x ¹ x ¹ x ² x ² x ³ x	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28 0.11	ue 2K = = = = • 0.04] = • 0.04] = = = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26 4.68	K)	k-value kJ/m²-K 75 48 9	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27) (27) (27
It losse ENT Fype 1 Fype 2 vs Type vs Type vs Type ype1 ype2	s and he Gros area 41 2 3 94.4 42.5 6.6	48 53 7	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.45 42.53 6.67	rea m ² × x × x × x × x × x × x × x ×	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28 0.11 0.21	ue 2K = = = = • 0.04] = • 0.04] = = = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26 4.68	K)	k-value kJ/m²-K 75 48 9	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27) (27) (27
It losse ENT Fype 1 Fype 2 vs Type vs Type vs Type vs Type ype1 ype2 rea of e	s and he Gros area 42.5 94.4 42.5 6.6 lements	48 53 7	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.49 42.53 6.67 191.2	rea m ² x x x x x x x x x x x x x x x x x x x	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28 0.11 0.21	ue 2K = = = • 0.04] = • 0.04] = = = = = = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26 4.68 1.4	K)	k-value kJ/m²-K 75 48 9 9	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27) (27) (27
It losse ENT Type 1 Type 2 vs Type vs Type vs Type vs Type ype1 ype2 rea of e all	s and he Gros area 2 3 94.2 42.5 6.6 lements	48 53 7	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.49 42.53 6.67 191.2	rea m ² × x	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28 0.11 0.21	ue 2K = = = • 0.04] = • 0.04] = = = = = = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26 4.68 1.4	K)	k-value kJ/m²-K 75 48 9 9 9	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (3564 (28) (3815.52 (29) (382.77 (30) (60.03 (30) (31) (2052 (32)
It losse ENT Fype 1 Fype 2 vs Type vs Type vs Type vs Type ype1 ype2 rea of e all wall **	s and he Gros area 2 3 94.2 42.5 6.6 lements	48 53 7	paramete Openin m	er: ngs 1 ²	Net Ar A ,r 2.06 1.91 5.65 3.93 1.44 47.52 79.49 42.53 6.67 191.2 42.75	rea m^2 x^1 x^1 x^2 x^2 x^2 x^2 x^3 x^2 x^2 x^2 x^3 x^4	U-val W/m2 1.1 1.5 1/[1/(1.2)+ 1/[1/(1.2)+ 1/[1/(1.2)+ 0.12 0.28 0.11 0.21	ue 2K = = = • 0.04] = • 0.04] = = = = = = = = = =	A X U (W/ 2.266 2.865 6.47 4.5 1.65 5.7024 22.26 4.68 1.4	K)	k-value kJ/m²-K 75 48 9 9 9 9 9	A X k kJ/K (26) (26) (27) (27) (27) (27) (27) (27) (27) (27
	1.27 d infiltra 0.36 te effec chanica inced with balance 0 balance 0 vhole h (22b)n 0 natural (22b)n 0.57 tive air	1.271.25d infiltration rat 0.36 0.36 te effective airchanical ventilanust air heat pumpnced with heat record 0.57 0.56 tive air change	1.271.251.23d infiltration rate (allow 0.36 0.35 te effective air changechanical ventilation:nust air heat pump using Appnced with heat recovery: efficientpalanced mechanical venchanical venchani	d infiltration rate (allowing for sl 0.36 0.36 0.35 0.31 te effective air change rate for a chanical ventilation: ust air heat pump using Appendix N, (2 need with heat recovery: efficiency in % palanced mechanical ventilation 0 0 0 0 0 palanced mechanical ventilation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.271.251.231.11.08d infiltration rate (allowing for shelter an 0.360.360.350.310.31te effective air change rate for the applichanical ventilation: nust air heat pump using Appendix N, (23b) = (23a) nced with heat recovery: efficiency in % allowing for balanced mechanical ventilation with he 000000000palanced mechanical ventilation with he 0000palanced mechanical ventilation without 0000palanced mechanical ventilation or positive (22b)m < 0.5 × (23b), then (24c) = (23b)	1.271.251.231.11.080.95d infiltration rate (allowing for shelter and wind s 0.36 0.36 0.35 0.31 0.31 0.27 te effective air change rate for the applicable carchanical ventilation:nust air heat pump using Appendix N, $(23b) = (23a) \times Fmv$ (andneed with heat recovery: efficiency in % allowing for in-use forbalanced mechanical ventilation with heat recovery:0000000balanced mechanical ventilation without heat recovery:00.550.550.54tive air c	1.271.251.231.11.080.950.95d infiltration rate (allowing for shelter and wind speed) = 0.36 0.36 0.35 0.31 0.31 0.27 0.27 te effective air change rate for the applicable casechanical ventilation:nust air heat pump using Appendix N, $(23b) = (23a) \times Fmv$ (equation (nced with heat recovery: efficiency in % allowing for in-use factor (from the problem of the applicable case)palanced mechanical ventilation with heat recovery (MV)00000palanced mechanical ventilation with heat recovery (MV)00000palanced mechanical ventilation without heat recovery (MV)0000palanced mechanical ventilation or positive input ventilati(22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c)	1.271.251.231.11.080.950.950.92d infiltration rate (allowing for shelter and wind speed) = (21a) x0.360.360.350.310.310.270.270.26te effective air change rate for the applicable casechanical ventilation:nust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), othernced with heat recovery: efficiency in % allowing for in-use factor (from Table 4hpalanced mechanical ventilation with heat recovery (MVHR) (24a00000palanced mechanical ventilation without heat recovery (MV) (24b00000palanced mechanical ventilation or positive input ventilation from (22b)m < 0.5 x (23b), then (24c) = (23b); otherwise (24c) = (22b)	1.271.251.231.11.080.950.950.921d infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m0.360.360.350.310.310.270.270.260.29te effective air change rate for the applicable casechanical ventilation:nust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23thered with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =palanced mechanical ventilation with heat recovery (MVHR) (24a)m = (2000000palanced mechanical ventilation without heat recovery (MV) (24b)m = (2000000palanced mechanical ventilation or positive input ventilation from outside(22b)m < 0.5 x (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0	1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 d infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m 0.36 0.35 0.31 0.31 0.27 0.27 0.26 0.29 0.31 te effective air change rate for the applicable case 0.36 0.35 0.31 0.31 0.27 0.27 0.26 0.29 0.31 te effective air change rate for the applicable case 0.26 0.29 0.31 0.27 0.26 0.29 0.31 te effective air change rate for the applicable case chanical ventilation: ust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) palanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (0.0000000000000000000000000000000000	1.27 1.25 1.23 1.1 1.08 0.95 0.92 1 1.08 1.12 d infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m 0.36 0.35 0.31 0.31 0.27 0.26 0.29 0.31 0.32 te effective air change rate for the applicable case chanical ventilation: uust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) need with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.27 1.25 1.23 1.1 1.08 0.95 0.92 1 1.08 1.12 1.18 d infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m 0.36 0.35 0.31 0.31 0.27 0.26 0.29 0.31 0.32 0.34 ite effective air change rate for the applicable case chanical ventilation: []

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2

 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)...(30) + (32) =

51.79 (33)

Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	13891.26	(34)
Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K									= (34)	÷ (4) =			146.16	(35)
	-	sments wh ad of a de			construct	ion are noi	t known pr	ecisely the	indicative	values of	TMP in Ta	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix I	K						6.64	(36)
			are not kn	10wn (36) =	= 0.05 x (3	1)								_
Total f	abric he	at loss							(33) +	(36) =			58.43	(37)
Ventila	ation hea	at loss ca	alculated	d monthly	у				(38)m	= 0.33 × (25)m x (5)		1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-	
(38)m=	43.69	43.49	43.3	42.39	42.21	41.42	41.42	41.27	41.72	42.21	42.56	42.92		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m	-	_	
(39)m=	102.12	101.92	101.73	100.81	100.64	99.85	99.85	99.7	100.15	100.64	100.99	101.35		
Heat lo	oss para	ameter (H	HLP), W	/m²K	-		-			Average = = (39)m ÷		₁₂ /12=	100.81	(39)
(40)m=	1.07	1.07	1.07	1.06	1.06	1.05	1.05	1.05	1.05	1.06	1.06	1.07		
Numb	er of day	ys in mo	nth (Tab	le 1a)					,	Average =	Sum(40)1	₁₂ / 12=	1.06	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		-					-	-					•	
4 \M/a	ater hea	ting ene	rav reau	irement [.]								kWh/y	ear:	
			37.044									, , , , , , , , , , , , , , , , , , ,		
		upancy, I										69		(42)
	·A > 13. ·A £ 13.		+ 1.76 X	(1 - exp	(-0.0003	49 X (11	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	9)			
			ater usag	ge in litre	es per da	iy Vd,av	erage =	(25 x N)	+ 36		98	.05	1	(43)
		-		• •		-	-	to achieve	a water us	se target o	f 		1	
not mor	e that 125	litres per j	berson pei I	r day (all w T	vater use, l	not and co	ia) T						1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from	i able 1c x	(43)					1	
(44)m=	107.86	103.94	100.02	96.09	92.17	88.25	88.25	92.17	96.09	100.02	103.94	107.86		_
Enerav	content of	f hot water	used - cal	lculated m	onthly – 4	190 x Vd r	туптуГ)))))))))))))))))))		Total = Su	· · ·		1176.66	(44)
										·		I	1	
(45)m=	159.95	139.9	144.36	125.86	120.76	104.21	96.57	110.81	112.13	130.68	142.65	154.91	4540.70	
lf instan	taneous v	vater heati	ng at point	t of use (no	o hot water	storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	=	1542.78	(45)
(46)m=	23.99	20.98	21.65	18.88	18.11	15.63	14.48	16.62	16.82	19.6	21.4	23.24	1	(46)
· ·	storage		21.05	10.00	10.11	15.05	14.40	10.02	10.02	19.0	21.4	23.24	J	(40)
	•		includir	ng any se	olar or W	/WHRS	storage	within sa	ame ves	sel		0]	(47)
-					velling, e		-					-	1	
		-			-			mbi boil	ers) ente	er '0' in (47)			
	storage			,					,	,	,			
a) If m	nanufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0]	(48)
Tempe	erature f	actor fro	m Table	2b								0	1	(49)
Energ	y lost fro	om water	· storage	, kWh/ye	ear			(48) x (49)) =			0	j	(50)
b) If m	nanufact	turer's de	eclared o	cylinder	loss fact	or is not	known:				•		1	

If com	munity h	age loss leating s from Ta	ee secti	rom Tabl on 4.3	le 2 (kW	h/litre/da	ay)				г	0		(51) (52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	/ lost fro	m water	storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
0.		(54) in (5	•	, ,								0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m	L		1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(56)
	-	-	-	-			-	-	-	-		m Append	ix H	()
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
						0	0	0	Ū	0	I		1	
	•	•	,	om Table								0	Į	(58)
	•						. ,	65 × (41)			-+-+)			
	<u> </u>	i	i		i	· · · · · ·	· · · · · ·	ng and a	, <u> </u>	i	<u>, </u>	0	l	(50)
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0	Į	(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m	-	-	-			
(61)m=	14.14	12.76	14.1	13.6	14.02	13.53	13.96	14	13.57	14.07	13.66	14.13		(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	174.09	152.66	158.46	139.46	134.79	117.74	110.53	124.81	125.7	144.75	156.3	169.03		(62)
Solar DI	-IW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter											
(64)m=	174.09	152.66	158.46	139.46	134.79	117.74	110.53	124.81	125.7	144.75	156.3	169.03		
				1	1	1	1	l Outp	out from wa	ater heater	r (annual)₁	12	1708.34	(64)
Heat o	ains fro	m water	heating	. kWh/m	onth 0.2	5 ´ [0.85	x (45)m	n + (61)m	n] + 0.8 x	([(46)m	+ (57)m	+ (59)m	1	-
(65)m=	56.72	49.71	51.53	45.25	43.66	38.03	35.6	40.34	40.68	46.97	50.84	55.04		(65)
	L	l m in cale	L	L of (65)m	I only if c	l Vlinder i	l s in the (l. dwelling	or hot w	l ater is fr		munity h	eating	
						Synnach i		awening	of not w			internity in	cating	
				5 and 5a).									
Metab		s (Table			Maria	line	1.1	A	Corr	Ort	New	Dee		
(00)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(66)
(66)m=	161.32	161.32	161.32	161.32	161.32	161.32	161.32	161.32	161.32	161.32	161.32	161.32	Į	(66)
-	<u> </u>	·	· · · · · ·	i – – –	· · ·	i	· · · ·	lso see		i	i	i	i	
(67)m=	59.68	53.01	43.11	32.64	24.4	20.6	22.26	28.93	38.83	49.3	57.54	61.34		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	370.23	374.07	364.39	343.78	317.76	293.31	276.97	273.13	282.81	303.42	329.44	353.89		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m=	53.82	53.82	53.82	53.82	53.82	53.82	53.82	53.82	53.82	53.82	53.82	53.82		(69)
Pumps	and fai	ns gains	(Table !	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.a. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=		-107.54	-107.54	-107.54	, , r	-107.54	-107.54	-107.54	-107.54	-107.54	-107.54	-107.54		(71)
		ı gains (T			!			!		I			1	
(72)m=	76.24	73.97	69.25	62.84	58.68	52.82	47.85	54.23	56.5	63.13	70.62	73.98		(72)
<u>, ,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													ł	

ctrv/m 61674 611.64 891.43 611.43 77.70 457.67 466.68 486.73 526.45 586.81 598.8 (73) Source state Source state <td colspan="10" source="" stat<="" th=""><th>Total internal</th><th>l gains =</th><th>:</th><th></th><th></th><th></th><th>(66)r</th><th>m + (67)m</th><th>n + (68</th><th>3)m +</th><th>(69)m + (1</th><th>70)m +</th><th>(71)m + (72)</th><th>m</th><th></th><th></th></td>	<th>Total internal</th> <th>l gains =</th> <th>:</th> <th></th> <th></th> <th></th> <th>(66)r</th> <th>m + (67)m</th> <th>n + (68</th> <th>3)m +</th> <th>(69)m + (1</th> <th>70)m +</th> <th>(71)m + (72)</th> <th>m</th> <th></th> <th></th>										Total internal	l gains =	:				(66)r	m + (67)m	n + (68	3)m +	(69)m + (1	70)m +	(71)m + (72)	m		
<th< td=""><td>(73)m= 616.74</td><td>611.64</td><td>587.34</td><td>549.85</td><td>511.43</td><td>477</td><td>7.32</td><td>457.67</td><td>466</td><td>.88</td><td>488.73</td><td>526.4</td><td>5 568.19</td><td>599.8</td><td>]</td><td>(73)</td></th<>	(73)m= 616.74	611.64	587.34	549.85	511.43	477	7.32	457.67	466	.88	488.73	526.4	5 568.19	599.8]	(73)										
Orientation: Access Factor Table 60 Area m ² Flux Table 6a g_ Table 6b FF Table 6c Gains (W) Northeast 0.9x 0.77 x 1.44 x 1128 x 0.76 x 0.77 s 1.99 (%) Northeast 0.9x 0.77 x 1.44 x 2297 x 0.76 x 0.77 s 1.44 x 0.76 x 0.77 s 1.44 x 0.76 x 0.77 s 4.849 (%) Northeast 0.9x 0.77 x 1.44 x 0.76 x 0.77 a 4.849 (%) Northeast 0.9x 0.77 x 1.44 x 0.76 x 0.77 a 4.849 (%) Northeast 0.9x 0.77 x 1.44 x 0.76 x 0.77 a 4.849 (%) Northeast 0.9x 0.77 x 1.44 X 2.807 0.76 x	6. Solar gain	s:																								
Table 6d m² Table 6a Table 6b Table 6c (W) Northeast 0.s. 0.77 x 1.44 x 22.97 x 0.76 x 0.77 = 5.99 (75) Northeast 0.s. 0.77 x 1.44 x 22.97 x 0.76 x 0.77 = 1.21.9 (75) Northeast 0.s. 0.77 x 1.44 x 67.98 x 0.77 = 48.49 (75) Northeast 0.s. 0.77 x 1.44 x 67.38 x 0.76 x 0.77 = 48.49 (75) Northeast 0.s. 0.77 x 1.44 X 0.76 x 0.77 = 48.49 (75) Northeast 0.s. 0.77 x 1.44 X 22.07 x 0.76 x 0.77 = 44.97 (75) Northeast 0.s. 0.77 x 1.44 X 22.07	-		-	r flux from	Table 6a	and a			tions	to co	nvert to the	e applic		on.												
Northeast 0.90 0.77 × 1.44 × 11.28 × 0.76 × 0.77 = 5.99 175 Northeast 0.90 0.77 × 1.44 × 22.97 × 0.76 × 0.77 = 12.19 (75) Northeast 0.90 0.77 × 1.44 × 67.96 × 0.77 = 36.08 (75) Northeast 0.90 0.77 × 1.44 × 97.38 × 0.76 × 0.77 = 48.49 (75) Northeast 0.90 0.77 × 1.44 × 97.83 × 0.76 × 0.77 = 48.37 (75) Northeast 0.90 0.77 × 1.44 × 20.72 × 0.77 = 1.44 × 20.76 × 0.77 = 1.44 × 20.76 × 0.77 = 7.5.65 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										т																
Northeast 0.5k 0.77 × 1.44 × 2.237 × 0.76 × 0.77 = 1.2.19 75 Northeast 0.5k 0.77 × 1.44 × 41.38 × 0.76 × 0.7 = 21.97 75 Northeast 0.5k 0.77 × 1.44 × 97.86 × 0.76 × 0.7 = 21.97 75 Northeast 0.5k 0.77 × 1.44 × 97.36 × 0.76 × 0.7 = 48.49 (75) Northeast 0.5k 0.77 × 1.44 × 97.83 0.076 × 0.7 = 48.37 (75) Northeast 0.5k 0.77 × 1.44 × 20.42 × 0.76 × 0.7 = 44.9 (75) Northeast 0.5k 0.77 × 1.44 × 0.27 × 0.7 = 76.64 (77)	-	Table ou				_	Tab	ie oa		- 1 4 		_			(VV)	_										
Northeast 0.9 0.77 x 1.44 x 41.33 x 0.76 x 0.77 = 1.21.7 Northeast 0.9x 0.77 x 1.44 x 67.86 x 0.76 x 0.77 = 36.08 (75) Northeast 0.9x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 = 48.49 (75) Northeast 0.9x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 = 48.37 (75) Northeast 0.9x 0.77 x 1.44 x 22.67 (76) x 0.77 = 14.9 (75) Northeast 0.9x 0.77 x 1.44 x 28.07 x 0.76 x 0.77 = 14.9 (75) Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.77 = 7.6.6	l	0.77	x	1.4	44	×	11	1.28	X		0.76	×	0.7	=	5.99	(75)										
Northeast 0.9x 0.77 x 1.44 x 67.96 x 0.76 x 0.71 = 36.08 75 Northeast 0.9x 0.77 x 1.44 x 91.35 x 0.76 x 0.77 = 48.49 (75) Northeast 0.9x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 = 48.49 (75) Northeast 0.9x 0.77 x 1.44 x 77.63 x 0.76 x 0.77 = 48.57 (75) Northeast 0.9x 0.77 x 1.44 x 50.42 x 0.76 x 0.77 = 14.9 (75) Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.77 = 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 0.76 x 0.77 = 0.64 <t< td=""><td></td><td>0.77</td><td>X</td><td>1.4</td><td>44</td><td>×</td><td>22</td><td>2.97</td><td>X</td><td></td><td>0.76</td><td>×</td><td>0.7</td><td>=</td><td>12.19</td><td>(75)</td></t<>		0.77	X	1.4	44	×	22	2.97	X		0.76	×	0.7	=	12.19	(75)										
Northeast 0, x 0.77 x 1.44 x 91.35 x 0.76 x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 z 1.44 x 97.38 x 0.76 x 0.77 z 1.44 x 97.38 x 0.76 x 0.77 z 1.44 x 97.23 x 0.77 x 1.44 x 28.07 x 0.76 x 0.77 z 1.44 x 28.07 x 0.76 x 0.77 z 1.44 x 28.17 x 0.76 x 0.77 z 1.44 x 92.11 x 0.76 x 0.77 z 6.85 x 0.76 x 0.77 z 6.85 x 0.76	l	0.77	×	1.4	44	×	4′	1.38	X		0.76	×	0.7	=	21.97	(75)										
Northeast 0, x 0.77 x 1.44 x 97.38 x 0.76 x 0.77 z 1.44 x 97.38 x 0.76 x 0.77 z 1.44 x 50.42 x 0.76 x 0.77 z 1.44 x 28.07 x 0.76 x 0.77 z 1.44 x 92.17 x 0.76 x 0.77 z 5.65 x 0.76 x 0.77 z 5.65		0.77	x	1.4	44	×	67	7.96	X		0.76	×	0.7	=	36.08	(75)										
Northeast 0.9x 0.77 x 1.44 x 91.1 x 0.76 x 0.7 = 48.37 (75) Northeast 0.9x 0.77 x 1.44 x 72.63 x 0.76 x 0.7 = 48.37 (75) Northeast 0.9x 0.77 x 1.44 x 50.42 x 0.76 x 0.7 = 48.37 (75) Northeast 0.9x 0.77 x 1.44 x 28.07 x 0.76 x 0.7 = 14.9 (75) Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.7 = 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 62.67 x 0.76 x 0.7 = 130.65 (77) Southeast 0.9x 0.77 x 5.65 x 110.25 x 0.76 x 0.7 2	l	0.77	x	1.4	44	×	9′	1.35	x		0.76	×	0.7	=	48.49	(75)										
Northeast 0.9x 0.77 x 1.44 x 72.63 x 0.76 x 0.77 = 38.56 75 Northeast 0.9x 0.77 x 1.44 x 50.42 x 0.76 x 0.77 = 26.77 (75) Northeast 0.9x 0.77 x 1.44 x 28.07 x 0.76 x 0.77 = 14.9 (75) Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.77 = 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 36.79 x 0.76 x 0.77 = 130.65 (77) Southeast 0.9x 0.77 x 5.66 x 10.75 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.66	l	0.77	x	1.4	44	x	97	7.38	x		0.76	×	0.7	=	51.7	(75)										
Northeast 0.9x 0.77 × 1.44 × 50.42 × 0.76 × 0.7 = 26.77 (75) Northeast 0.9x 0.77 × 1.44 × 28.07 × 0.76 × 0.7 = 14.9 (75) Northeast 0.9x 0.77 × 1.44 × 28.07 × 0.76 × 0.7 = 26.77 (75) Northeast 0.9x 0.77 × 1.44 × 92.1 × 0.76 × 0.7 = 26.77 (75) Southeast 0.9x 0.77 × 5.65 × 62.67 × 0.76 × 0.7 = 130.55 (77) Southeast 0.9x 0.77 × 5.65 × 119.01 × 0.76 × 0.7 = 247.9 (77) Southeast 0.9x 0.77 × 5.65 × </td <td>l</td> <td>0.77</td> <td>x</td> <td>1.4</td> <td>44</td> <td>x</td> <td>9</td> <td>1.1</td> <td>x</td> <td></td> <td>0.76</td> <td>×</td> <td>0.7</td> <td>=</td> <td>48.37</td> <td>(75)</td>	l	0.77	x	1.4	44	x	9	1.1	x		0.76	×	0.7	=	48.37	(75)										
Northeast 0.9k 0.77 x 1.44 x 28.07 x 0.76 x 0.77 x 1.44 y 28.07 x 0.76 x 0.77 x 1.44 y 9.21 x 0.76 x 0.77 z 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 85.75 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 119.01 x 0.76 x 0.77 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.77 = 247.9 (77)	l	0.77	x	1.4	44	x	72	2.63	x		0.76	×	0.7	=	38.56	(75)										
Northeast 0.9x 0.77 x 1.44 x 14.2 x 0.76 x 0.7 = 7.54 (75) Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.7 = 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 36.79 x 0.76 x 0.7 = 14.89 (75) Southeast 0.9x 0.77 x 5.65 x 62.67 x 0.76 x 0.7 = 130.55 (77) Southeast 0.9x 0.77 x 5.65 x 106.25 x 0.76 x 0.7 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 118.15 x 0.76 x 0.7 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 114.39 x 0.76 x 0.7 <t< td=""><td>Northeast 0.9x</td><td>0.77</td><td>x</td><td>1.4</td><td>44</td><td>x</td><td>50</td><td>).42</td><td>x</td><td></td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>26.77</td><td>(75)</td></t<>	Northeast 0.9x	0.77	x	1.4	44	x	50).42	x		0.76	x	0.7	=	26.77	(75)										
Northeast 0.9x 0.77 x 1.44 x 9.21 x 0.76 x 0.77 = 4.89 (75) Southeast 0.9x 0.77 x 5.65 x 36.79 x 0.76 x 0.77 = 76.64 (77) Southeast 0.9x 0.77 x 5.65 x 62.67 x 0.76 x 0.77 = 130.55 (77) Southeast 0.9x 0.77 x 5.65 x 106.25 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 119.01 x 0.76 x 0.77 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.77 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.77	Northeast 0.9x	0.77	x	1.4	44	x	28	3.07	x		0.76	x	0.7	=	14.9	(75)										
Southeast 0, 9x 0.77 x 5.65 x 36.79 x 0.76 x 0.77 x 5.66 (77) Southeast 0, 9x 0.77 x 5.65 x 62.67 x 0.76 x 0.77 = 130.55 (77) Southeast 0, 9x 0.77 x 5.65 x 86.75 x 0.76 x 0.77 = 130.55 (77) Southeast 0, 9x 0.77 x 5.65 x 106.25 x 0.76 x 0.77 = 221.32 (77) Southeast 0, 9x 0.77 x 5.65 x 118.15 x 0.76 x 0.77 = 247.9 (77) Southeast 0, 9x 0.77 x 5.65 x 113.91 x 0.76 x 0.77 = 247.9 (77) Southeast 0, 9x 0.77 x 5.65 x 104.39 x 0.76 x 0	Northeast 0.9x	0.77	x	1.4	44	x	1	4.2	x		0.76	×	0.7	=	7.54	(75)										
Southeast 0.9x 0.77 × 5.65 × 62.67 × 0.76 × 0.77 = 130.55 (77) Southeast 0.9x 0.77 × 5.65 × 85.75 × 0.76 × 0.7 = 130.55 (77) Southeast 0.9x 0.77 × 5.65 × 106.25 × 0.76 × 0.7 = 121.32 (77) Southeast 0.9x 0.77 × 5.65 × 119.01 × 0.76 × 0.7 = 221.32 (77) Southeast 0.9x 0.77 × 5.65 × 118.05 × 0.76 × 0.7 = 247.9 (77) Southeast 0.9x 0.77 × 5.65 × 113.91 × 0.76 × 0.7 = 217.45 (77) Southeast 0.9x 0.77 × 5.65 × 104.39 × 0.76 × 0.7	Northeast 0.9x	0.77	×	1.4	44	x	9	.21	x		0.76	x	0.7	=	4.89	(75)										
Southeast $0.9x$ 0.77x5.65x85.75x0.76x0.7=178.62(77)Southeast $0.9x$ 0.77x5.65x106.25x0.76x0.7=221.32(77)Southeast $0.9x$ 0.77x5.65x119.01x0.76x0.7=247.9(77)Southeast $0.9x$ 0.77x5.65x119.01x0.76x0.7=246.11(77)Southeast $0.9x$ 0.77x5.65x113.91x0.76x0.7=237.28(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.7=217.45(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.7=217.45(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.7=217.45(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.7=193.41(77)Southeast $0.9x$ 0.77x5.65x114.97x0.76x0.7=144.29(77)Southeast $0.9x$ 0.77x5.65x31.49x0.76x0.7=144.29(77)Southeast $0.9x$ 0.77x3.93x11.	Southeast 0.9x	0.77	x	5.6	65	x	36	6.79	x		0.76	×	0.7	=	76.64	(77)										
Southeast 0.9x 0.77 x 5.65 x 106.25 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 119.01 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 119.01 x 0.76 x 0.77 = 221.32 (77) Southeast 0.9x 0.77 x 5.65 x 111.15 x 0.76 x 0.77 = 224.611 (77) Southeast 0.9x 0.77 x 5.65 x 104.39 x 0.76 x 0.77 = 237.28 (77) Southeast 0.9x 0.77 x 5.65 x 104.39 x 0.76 x 0.77 = 217.45 (77) Southeast 0.9x 0.77 x 5.65 x 92.85 x 0.76 x 0.77 = 113.41 (77) Southeast 0.9x 0.77 x 5.	Southeast 0.9x	0.77	x	5.6	65	x	62	2.67	x		0.76	×	0.7	=	130.55	(77)										
Southeast 0.9x 0.77 x 5.65 x 119.01 x 0.76 x 0.7 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 118.15 x 0.76 x 0.7 = 246.11 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.7 = 246.11 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.7 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.7 = 247.9 (77) Southeast 0.9x 0.77 x 5.65 x 192.85 x 0.76 x 0.7 = 193.41 (77) Southeast 0.9x 0.77 x 5.65 x 44.07 x 0.76 x 0.7 = 91.8 (77) Southeast 0.9x 0.77 x 5.65	Southeast 0.9x	0.77	×	5.6	65	x	8	5.75	x		0.76	x	0.7	=	178.62	(77)										
Southeast $0.9x$ 0.77x5.65x118.15x0.76x0.77=246.11(77)Southeast $0.9x$ 0.77x5.65x113.91x0.76x0.77=237.28(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.77=217.45(77)Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.77=193.41(77)Southeast $0.9x$ 0.77x5.65x92.85x0.76x0.77=194.29(77)Southeast $0.9x$ 0.77x5.65x69.27x0.76x0.77=144.29(77)Southeast $0.9x$ 0.77x5.65x31.49x0.76x0.77=16.35(81)Northwest $0.9x$ 0.77x3.93x11.28x0.76x0.77=16.35(81)Northwest $0.9x$ 0.77x3.93x22.97x0.76x0.77=33.28(81)Northwest $0.9x$ 0.77x3.93x22.97x0.76x0.77=59.95(81)Northwest $0.9x$ 0.77x3.93x67.96x0.76x0.77=59.95(81)Northwest $0.9x$ 0.77x3.93 <td< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>5.6</td><td>65</td><td>x</td><td>10</td><td>6.25</td><td>x</td><td></td><td>0.76</td><td>×</td><td>0.7</td><td>=</td><td>221.32</td><td>(77)</td></td<>	Southeast 0.9x	0.77	x	5.6	65	x	10	6.25	x		0.76	×	0.7	=	221.32	(77)										
Southeast 0.9x 0.77 x 5.65 x 113.91 x 0.76 x 0.77 = 237.28 (77) Southeast 0.9x 0.77 x 5.65 x 104.39 x 0.76 x 0.77 = 237.28 (77) Southeast 0.9x 0.77 x 5.65 x 104.39 x 0.76 x 0.77 = 217.45 (77) Southeast 0.9x 0.77 x 5.65 x 92.85 x 0.76 x 0.77 = 193.41 (77) Southeast 0.9x 0.77 x 5.65 x 69.27 x 0.76 x 0.77 = 144.29 (77) Southeast 0.9x 0.77 x 5.65 x 44.07 x 0.76 x 0.77 = 65.59 (77) Northwest 0.9x 0.77 x 3.93 x 11.28 x 0.76 x 0.77 = 33.28 (81) Northwest 0.9x 0.77 x 3.93 <td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>5.6</td> <td>65</td> <td>x</td> <td>11</td> <td>9.01</td> <td>x</td> <td></td> <td>0.76</td> <td>x</td> <td>0.7</td> <td>=</td> <td>247.9</td> <td>(77)</td>	Southeast 0.9x	0.77	x	5.6	65	x	11	9.01	x		0.76	x	0.7	=	247.9	(77)										
Southeast $0.9x$ 0.77x5.65x104.39x0.76x0.7=217.45(77)Southeast $0.9x$ 0.77x5.65x92.85x0.76x0.7=193.41(77)Southeast $0.9x$ 0.77x5.65x69.27x0.76x0.7=144.29(77)Southeast $0.9x$ 0.77x5.65x44.07x0.76x0.7=144.29(77)Southeast $0.9x$ 0.77x5.65x31.49x0.76x0.7=65.59(77)Northwest $0.9x$ 0.77x3.93x11.28x0.76x0.7=16.35(81)Northwest $0.9x$ 0.77x3.93x22.97x0.76x0.7=33.28(81)Northwest $0.9x$ 0.77x3.93x41.38x0.76x0.7=59.95(81)Northwest $0.9x$ 0.77x3.93x67.96x0.76x0.7=132.35(81)Northwest $0.9x$ 0.77x3.93x91.35x0.76x0.7=132.35(81)Northwest $0.9x$ 0.77x3.93x97.38x0.76x0.7=141.1(81)Northwest $0.9x$ 0.77x3.93x97.	Southeast 0.9x	0.77	x	5.6	65	x	11	8.15	x		0.76	x	0.7	=	246.11	(77)										
Southeast $0.9x$ 0.77 x 5.65 x 92.85 x 0.76 x 0.7 z 193.41 (77) Southeast $0.9x$ 0.77 x 5.65 x 69.27 x 0.76 x 0.7 z 144.29 (77) Southeast $0.9x$ 0.77 x 5.65 x 44.07 x 0.76 x 0.7 z 91.8 (77) Southeast $0.9x$ 0.77 x 5.65 x 44.07 x 0.76 x 0.7 z 91.8 (77) Southeast $0.9x$ 0.77 x 5.65 x 44.07 x 0.76 x 0.7 z 65.59 (77) Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 z 33.28 (81) Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 z 33.28 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 z 98.46 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 z 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0	Southeast 0.9x	0.77	x	5.6	65	x	11	3.91	x		0.76	x	0.7	=	237.28	(77)										
Southeast $0.9x$ 0.77 x 5.65 x 69.27 x 0.76 x 0.7 $=$ 144.29 (77) Southeast $0.9x$ 0.77 x 5.65 x 44.07 x 0.76 x 0.7 $=$ 91.8 (77) Southeast $0.9x$ 0.77 x 5.65 x 31.49 x 0.76 x 0.7 $=$ 91.8 (77) Northwest $0.9x$ 0.77 x 5.65 x 31.49 x 0.76 x 0.7 $=$ 65.59 (77) Northwest $0.9x$ 0.77 x 3.93 x 21.97 x 0.76 x 0.7 $=$ 33.28 (81) Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 $=$ 33.28 (81) Northwest $0.9x$ 0.77 x 3.93 x 41.38 x 0.76 x 0.7 $=$ 59.95 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0	Southeast 0.9x	0.77	x	5.6	65	x	10	4.39	x		0.76	×	0.7	=	217.45	(77)										
Southeast $0.9x$ 0.77 x 5.65 x 44.07 x 0.76 x 0.7 $=$ 91.8 (77) Southeast $0.9x$ 0.77 x 5.65 x 31.49 x 0.76 x 0.7 $=$ 65.59 (77) Northwest $0.9x$ 0.77 x 3.93 x 11.28 x 0.76 x 0.7 $=$ 16.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 $=$ 33.28 (81) Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 $=$ 59.95 (81) Northwest $0.9x$ 0.77 x 3.93 x 41.38 x 0.76 x 0.7 $=$ 98.46 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 132.3 (81) Northwest $0.9x$ 0.7	Southeast 0.9x	0.77	x	5.6	65	x	92	2.85	x		0.76	×	0.7	=	193.41	(77)										
Southeast $_{0.9x}$ 0.77x5.65x31.49x0.76x0.7=65.59(77)Northwest $_{0.9x}$ 0.77x3.93x11.28x0.76x0.7=16.35(81)Northwest $_{0.9x}$ 0.77x3.93x22.97x0.76x0.7=33.28(81)Northwest $_{0.9x}$ 0.77x3.93x22.97x0.76x0.7=33.28(81)Northwest $_{0.9x}$ 0.77x3.93x41.38x0.76x0.7=59.95(81)Northwest $_{0.9x}$ 0.77x3.93x67.96x0.76x0.7=98.46(81)Northwest $_{0.9x}$ 0.77x3.93x91.35x0.76x0.7=132.35(81)Northwest $_{0.9x}$ 0.77x3.93x97.38x0.76x0.7=141.1(81)Northwest $_{0.9x}$ 0.77x3.93x91.1x0.76x0.7=132.26(81)Northwest $_{0.9x}$ 0.77x3.93x72.63x0.76x0.7=132.26(81)Northwest $_{0.9x}$ 0.77x3.93x72.63x0.76x0.7=105.23(81)Northwest $_{0.9x}$ 0.77x3.93 </td <td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>5.6</td> <td>65</td> <td>x</td> <td>69</td> <td>9.27</td> <td>x</td> <td></td> <td>0.76</td> <td>×</td> <td>0.7</td> <td>=</td> <td>144.29</td> <td>(77)</td>	Southeast 0.9x	0.77	x	5.6	65	x	69	9.27	x		0.76	×	0.7	=	144.29	(77)										
Northwest 0.9x 0.77 x 3.93 x 11.28 x 0.76 x 0.77 = 16.35 (81) Northwest 0.9x 0.77 x 3.93 x 22.97 x 0.76 x 0.7 = 33.28 (81) Northwest 0.9x 0.77 x 3.93 x 22.97 x 0.76 x 0.7 = 33.28 (81) Northwest 0.9x 0.77 x 3.93 x 41.38 x 0.76 x 0.7 = 59.95 (81) Northwest 0.9x 0.77 x 3.93 x 67.96 x 0.76 x 0.7 = 98.46 (81) Northwest 0.9x 0.77 x 3.93 x 91.35 x 0.76 x 0.7 = 132.35 (81) Northwest 0.9x 0.77 x 3.93 x 97.38 x 0.76 x 0.7 = 141.1 (81) Northwest 0.9x 0.77 x 3.93 x	Southeast 0.9x	0.77	x	5.6	65	x	44	4.07	x		0.76	×	0.7	=	91.8	(77)										
Northwest $0.9x$ 0.77 x 3.93 x 22.97 x 0.76 x 0.7 $=$ 33.28 (81)Northwest $0.9x$ 0.77 x 3.93 x 41.38 x 0.76 x 0.7 $=$ 59.95 (81)Northwest $0.9x$ 0.77 x 3.93 x 41.38 x 0.76 x 0.7 $=$ 59.95 (81)Northwest $0.9x$ 0.77 x 3.93 x 67.96 x 0.76 x 0.7 $=$ 98.46 (81)Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81)Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81)Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132.35 (81)Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81)Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Southeast 0.9x	0.77	x	5.6	65	x	3′	1.49	x		0.76	×	0.7	=	65.59	(77)										
Northwest $0.9x$ 0.77 x 3.93 x 41.38 x 0.76 x 0.7 $=$ 59.95 (81) Northwest $0.9x$ 0.77 x 3.93 x 67.96 x 0.76 x 0.7 $=$ 98.46 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	x	1	1.28	x		0.76	×	0.7	=	16.35	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 67.96 x 0.76 x 0.7 $=$ 98.46 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	x	22	2.97	x		0.76	×	0.7	=	33.28	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 91.35 x 0.76 x 0.7 $=$ 132.35 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	x	4	1.38	x		0.76	×	0.7	=	59.95	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 97.38 x 0.76 x 0.7 $=$ 141.1 (81) Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	x	67	7.96	x		0.76	×	0.7	=	98.46	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 91.1 x 0.76 x 0.7 $=$ 132 (81) Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 $=$ 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 $=$ 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	×	9′	1.35	x		0.76	×	0.7	=	132.35	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 72.63 x 0.76 x 0.7 = 105.23 (81) Northwest $0.9x$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 = 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	x	97	7.38	x		0.76	×	0.7	= =	141.1	(81)										
Northwest $_{0.9x}$ 0.77 x 3.93 x 50.42 x 0.76 x 0.7 = 73.05 (81)	Northwest 0.9x	0.77	x	3.9	93	×	9	1.1	x		0.76	×	0.7	=	132	(81)										
	Northwest 0.9x	0.77	x	3.9	93	×	72	2.63	×		0.76	×	0.7	=	105.23	(81)										
Northwest $0.9x$ 0.77 x 3.93 x 28.07 x 0.76 x 0.7 = 40.67 (81)	Northwest 0.9x	0.77	x	3.9	93	×	50).42	×		0.76	×	0.7	=	73.05	(81)										
	Northwest 0.9x	0.77	x	3.9	93	×	28	3.07	x		0.76	×	0.7	=	40.67	(81)										

Northw	est 0.9x	0.77	x	3.9	3	×	1	4.2	x	0.76	┐ × Ӷ	0.7	=	20.57	(81)
Northw	est 0.9x	0.77	x	3.9	3	хГ	<u></u>).21	× [0.76	╡ _×	0.7		13.35	(81)
	L	0.11		0.0		L				0.10		0.1		10.00	
Solar	nains in	watts ca	alculated	for eac	h month				(83)m – S	um(74)m .	(82)m				
(83)m=	98.98	176.02	260.55	355.86	428.75		3.91	417.64	361.23	293.23	199.85	119.91	83.83		(83)
Total o	L ains – i	i nternal a	and solar	i ' (84)m =	i = (73)m ·	L + (83	 3)m ,	watts						I	
(84)m=	715.72	787.66	847.89	905.71	940.18	r È	, 5.23	875.3	828.11	781.96	726.3	688.1	683.63		(84)
		I				I									. ,
			perature	` U		<i>′</i>									_
Temp	erature	during h	neating p	eriods ir	n the livi	ng a	rea f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(se	e Ta	ble 9a)						1	
	Jan	Feb	Mar	Apr	May	J	un	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	0.97	0.96	0.93	0.88	0.78	0.	63	0.48	0.52	0.73	0.9	0.96	0.98		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollow	/ ster	os 3 to 7	in Tabl	e 9c)					
(87)m=	19.48	19.67	19.97	20.36	20.69	1).9	20.97	20.96	, 20.82	20.4	19.88	19.44		(87)
Taman		l alumia auk				<u>مارید</u>								1	
	20.02	20.02	eating p	20.03	20.03	1	.04	20.04	20.04		20.02	20.03	20.02		(88)
(88)m=	20.02	20.02	20.03	20.03	20.03	20	.04	20.04	20.04	20.04	20.03	20.03	20.03	Į	(00)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,n	n (se	e Table	9a)	-					
(89)m=	0.97	0.95	0.92	0.86	0.73	0.	55	0.38	0.43	0.66	0.87	0.95	0.97		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T	Γ2 (fc	ollow ste	ps 3 to	7 in Tabl	e 9c)				
(90)m=	18.65	18.83	19.13	19.51	19.81	<u> </u>	.98	20.03	20.03	19.93	, 19.56	19.05	18.61		(90)
	<u> </u>	!				I				f	LA = Livin	g area ÷ (4	+) =	0.16	(91)
				a dha a ch			\ 1	·	. (4 . 6)	A) TO					
	r	· · ·	ature (fo			1	<u> </u>		,	<u> </u>	40.00	40.40	40.75	l	(02)
(92)m=	18.78	18.97	19.27	19.65	19.95		.13	20.18	20.18	20.07	19.69	19.18	18.75	ł	(92)
	<u> </u>	1	he mear			1	- 1				· · · · · · · · · · · · · · · · · · ·	40.00	10.0	I	(02)
(93)m=	18.63	18.82	19.12	19.5	19.8	19	.98	20.03	20.03	19.92	19.54	19.03	18.6		(93)
			uirement						-		//	=0)			
			ternal ter	•		ned a	at ste	ep 11 of	l able 9	o, so tha	t II,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May		un	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm		May			oui	nug	000	000	1101	Dee	I	
(94)m=	0.96	0.94	0.91	0.84	0.72	0.	55	0.38	0.42	0.66	0.86	0.94	0.96		(94)
		l hmGm	, W = (94											1	
(95)m=	685.01	740.28	769.21	760.52	678.71	501	1.19	335.14	350.74	512.37	621.42	644.19	657.96		(95)
			rnal tem											1	
(96)m=	4.3	4.9	6.5	8.9	11.7		1.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	loss rate	i e for mea	I an intern	al tempe	erature.						1			I	
(97)m=	1463.7	1418.48	1283.4	1068.14	815.33	1	7.27	342.51	361.45	582.69	899.98	1204.77	1458.98		(97)
	L e heatin		ement fo											I	
(98)m=	579.34	455.75	382.55	221.49	101.64	-	0	0	0	0	207.24	403.62	595.97		
) = Sum(9		2947.6	(98)
0					.,				1010	i por your	(1111#)001) = C um(c	3 /13,912 —		4
Space	e neatin	g require	ement in	KVVh/m²	year									31.01	(99)
9a. En	ergy red	quiremer	nts – Indi	ividual h	eating s	ystei	ms ir	ncluding	micro-C	CHP)					
-	e heatii	-											I		_
Fracti	ion of sp	bace hea	at from se	econdar	y/supple	mer	ntary	system						0	(201)

Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								90.5	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	ז, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space		· ·	ement (c	alculate	d above))	1			1	1		1	
	579.34	455.75	382.55	221.49	101.64	0	0	0	0	207.24	403.62	595.97		
(211)m			1	00 ÷ (20	<u> </u>								1	(211)
	640.16	503.59	422.71	244.74	112.31	0	0		0 I (kWh/yea	229	445.98	658.52		(211)
= {[(98)m x (20)1)]}x 1	00 ÷ (20	r i									3257.01]()
(215)m=	0	0	0	0	0	0	0	0 Tota	0 I (kWh/yea	0	0	0	0	(215)
Wator	heating							Tota	i (kwii/yee		2 1 0) _{15,10} 1	12	0	(213)
	-	•	ter (calc	ulated al	bove)									
	174.09	152.66	158.46	139.46	134.79	117.74	110.53	124.81	125.7	144.75	156.3	169.03		
Efficier	ncy of w	ater hea	ater										87.3	(216)
(217)m=	89.74	89.68	89.54	89.24	88.65	87.3	87.3	87.3	87.3	89.16	89.58	89.77		(217)
		-	kWh/m											
(219)m=		170.23) ÷ (217) 176.98	156.28	152.05	134.87	126.61	142.97	143.99	162.36	174.48	188.29		
			1	1			1	Tota	I = Sum(2	19a) ₁₁₂ =	1	1	1923.1	(219)
	I totals									k	Wh/yea	r	kWh/year	-
Space	heating	fuel use	ed, main	system	1								3257.01	
Water	heating	fuel use	ed										1923.1]
Electri	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatin	ig pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	electricity	/ for the	above, l	kWh/yea	r			sum	of (230a).	(230g) =		L	75	(231)
	city for li			,									421.61	(232)
		0 0	for all u	ses (211) (221)	+ (231)	+ (232)	(237h)	_				5764.02	(338)
		0,		eating sy	, , ,	. (201)	. (202).	(2010)	_				0701.02	
104.1			vidual fic	Janiy Sy	3101113.									
						Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space	heating	- main s	system 1	ļ		(217	1) x			3.4	8	x 0.01 =	113.34	(240)
Space	heating	- main s	system 2	2		(213	3) x			0)	x 0.01 =	0	(241)
Space	heating	- secon	dary			(21	5) x			13.	19	x 0.01 =	0	(242)
Water	heating	cost (ot	her fuel)			(219	9)			3.4	8	x 0.01 =	66.92	(247)
Pumps	s, fans a	nd elect	ric keep	-hot		(23	1)			13.	19	x 0.01 =	9.89	(249)

(if off-peak tariff, list each of (230a) to (230) Energy for lighting	g) separately as applicable an (232)	d apply fuel price according to 13.19 × 0.01 =		(250)
Additional standing charges (Table 12)			120	(251)
Appendix Q items: repeat lines (253) and (2	254) as pooled			J
	45)(247) + (250)(254) =		365.77	(255)
11a. SAP rating - individual heating system	ms			
Energy cost deflator (Table 12)			0.42	(256)
Energy cost factor (ECF) [(2	55) x (256)] ÷ [(4) + 45.0] =		1.1	(257)
SAP rating (Section 12)			84.7	(258)
12a. CO2 emissions – Individual heating s	systems including micro-CHP			
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/yea	ır
Space heating (main system 1)	(211) x	0.216 =	703.51	(261)
Space heating (secondary)	(215) x	0.519 =	0	(263)
Water heating	(219) x	0.216 =	415.39	(264)
Space and water heating	(261) + (262) + (263) + (263)	64) =	1118.91	(265)
Electricity for pumps, fans and electric keep	o-hot (231) x	0.519 =	38.93	(267)
Electricity for lighting	(232) x	0.519 =	218.81	(268)
Total CO2, kg/year		sum of (265)(271) =	1376.64	(272)
CO2 emissions per m ²		(272) ÷ (4) =	14.48	(273)
El rating (section 14)			87	(274)
13a. Primary Energy				
	Energy kWh/year	Primary factor	P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22 =	3973.56	(261)
Space heating (secondary)	(215) x	3.07 =	0	(263)
Energy for water heating	(219) x	1.22 =	2346.19	(264)
Space and water heating	(261) + (262) + (263) + (263)	64) =	6319.74	(265)
Electricity for pumps, fans and electric keep	o-hot (231) x	3.07 =	230.25	(267)
Electricity for lighting	(232) x	0 =	1294.33	(268)
'Total Primary Energy		sum of (265)(271) =	7844.33	(272)
Primary energy kWh/m²/year		(272) ÷ (4) =	82.54	(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 10 March 2021

Property Details: 068 Tweed [Semi] DCC2

Dwelling type: Located in: Region: Cross ventilation pos Number of storeys: Front of dwelling face Overshading: Overhangs: Thermal mass parame Night ventilation: Blinds, curtains, shut Ventilation rate during Overheating Details:	es: eter: ters:	ather (a	ch):	England South East Yes 2 South East Average of None Calculated False None	t r unknown			
Summer ventilation h Transmission heat lo	ss coeffi	cient:	ent:	617.23 58.4				(P1)
Summer heat loss co	efficient:			675.66				(P2)
Overhangs:								
Orientation: South East (Front) North West (Rear) North East (Side)	Ratio: 0 0 0		Z_overhangs: 1 1 1					
Solar shading:								
Orientation:	Z blind	ls:	Solar access:	Ove	rhangs:	Z summer:		
Orientation: South East (Front) North West (Rear) North East (Side)	Z blind 1 1 1	ls:	Solar access: 0.9 0.9 0.9	Ove 1 1 1	rhangs:	Z summer: 0.9 0.9 0.9		(P8) (P8) (P8)
South East (Front) North West (Rear)	1 1	ls:	0.9 0.9	1 1	rhangs:	0.9 0.9		(P8)
South East (Front) North West (Rear) North East (Side) Solar gains: Orientation South East (Front) North West (Rear)	1 1 1 0.9 x 0.9 x	Area 5.65 3.93	0.9 0.9 0.9 Flux 126.97 105.45	1 1 1 g_ 0.76 0.76	FF 0.7 0.7	0.9 0.9 0.9 Shading 0.9 0.9 0.9	Gains 309.14 178.58 65 44	(P8)
South East (Front) North West (Rear) North East (Side) Solar gains: Orientation South East (Front)	1 1 1 0.9 x	Area 5.65	0.9 0.9 0.9 Flux 126.97	1 1 1 9 _ 0.76	FF 0.7	0.9 0.9 0.9 Shading 0.9	309.14 178.58 65.44	(P8)
South East (Front) North West (Rear) North East (Side) Solar gains: Orientation South East (Front) North West (Rear)	1 1 1 0.9 x 0.9 x	Area 5.65 3.93	0.9 0.9 0.9 Flux 126.97 105.45	1 1 1 g_ 0.76 0.76	FF 0.7 0.7	0.9 0.9 0.9 Shading 0.9 0.9 0.9 0.9	309.14 178.58 65.44	(P8) (P8)
South East (Front) North West (Rear) North East (Side) Solar gains: Orientation South East (Front) North West (Rear) North East (Side)	1 1 1 0.9 x 0.9 x 0.9 x temperature incre	Area 5.65 3.93 1.44 ture (Se	0.9 0.9 0.9 Flux 126.97 105.45 105.45	1 1 1 9_ 0.76 0.76 0.76 0.76 0.76 10 1.1 10 1.1 15 0.9 17	FF 0.7 0.7 0.7 0.7 0.7	0.9 0.9 0.9 Shading 0.9 0.9 0.9 0.9	309.14 178.58 65.44 553.16 August 463.88 945.84 1.4 17.5 0.98 19.88	(P8) (P8) (P3/P4)