# **Regulations Compliance Report**

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.1.8

| Printed on 30 Marc                                                       | ch 2022 at 12:20:33                                |                                                                                                                                                                                                                               |                                         |                             |
|--------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|
| Assessed By:                                                             | Matthew Stainrod (                                 | (STRO023501)                                                                                                                                                                                                                  | Building Type:                          | Flat                        |
| Dwelling Details:                                                        | ·                                                  |                                                                                                                                                                                                                               | Duliung 17pe.                           |                             |
| NEW DWELLING                                                             |                                                    |                                                                                                                                                                                                                               |                                         |                             |
| Site Reference :                                                         | Beaulieu Zone Q                                    |                                                                                                                                                                                                                               | Plot Reference:                         | OPP-074343 Plot 98 (Block 2 |
| Address :                                                                |                                                    | Beaulieu Zone Q, Chelmsford                                                                                                                                                                                                   |                                         | <b>.</b> ,                  |
| Client Details:                                                          |                                                    |                                                                                                                                                                                                                               |                                         |                             |
| Name:<br>Address :                                                       | Countryside Proper<br>Countryside House            | rties<br>e, The Drive, Brentwood, CM13 3AT                                                                                                                                                                                    | Г                                       |                             |
| It is not a comple                                                       | rs items included with<br>the report of regulation | thin the SAP calculations.<br>ions compliance.                                                                                                                                                                                |                                         |                             |
| Fuel factor: 1.00 (r<br>Target Carbon Dio                                | oxide Emission Rate (<br>Dioxide Emission Rate     | (TER)                                                                                                                                                                                                                         | 18.19 kg/m²<br>17.14 kg/m²              | ОК                          |
| 2 Fabric U-Value<br>Element<br>External v<br>Party wall<br>Floor<br>Roof | wall                                               | Average<br>0.23 (max. 0.30)<br>0.00 (max. 0.20)<br>(no floor)<br>(no roof)                                                                                                                                                    | <b>Highest</b><br>0.24 (max. 0.70)<br>- | ОК<br>ОК                    |
| Openings                                                                 |                                                    | 1.16 (max. 2.00)                                                                                                                                                                                                              | 1.20 (max. 3.30)                        | ОК                          |
| 3 Air permeabilit                                                        | -                                                  |                                                                                                                                                                                                                               |                                         |                             |
| Air permeat<br>Maximum                                                   | bility at 50 pascals                               |                                                                                                                                                                                                                               | 5.00<br>10.0                            | ок                          |
| 4 Heating efficie                                                        |                                                    |                                                                                                                                                                                                                               |                                         |                             |
| Main Heatin                                                              | ıg system:                                         | Database: (rev 492, product index<br>Boiler system with radiators or und<br>Brand name: Potterton<br>Model: Promax Ultra<br>Model qualifier: Combi 33 ErP<br>(Combi boiler)<br>Efficiency 89.1 % SEDBUK2009<br>Minimum 88.0 % | ,                                       | ОК                          |
| Secondary I                                                              | heating system:                                    | None                                                                                                                                                                                                                          |                                         |                             |
| 5 Cylinder insula                                                        | ation                                              |                                                                                                                                                                                                                               |                                         |                             |
| Hot water S<br>6 Controls                                                | torage:                                            | No cylinder                                                                                                                                                                                                                   |                                         |                             |
| Space heati                                                              | -                                                  | Time and temperature zone contro                                                                                                                                                                                              | ol                                      | ОК                          |
| Hot water co<br>Boiler interlo                                           |                                                    | No cylinder<br>Yes                                                                                                                                                                                                            |                                         | ОК                          |

# **Regulations Compliance Report**

| 7 Low energy lights                                 |                                            |                        |
|-----------------------------------------------------|--------------------------------------------|------------------------|
| Percentage of fixed lights with low-energy fittings | 100.0%                                     |                        |
| Minimum                                             | 75.0%                                      | OK                     |
| 8 Mechanical ventilation                            |                                            |                        |
| Continuous extract system (decentralised)           |                                            |                        |
| Specific fan power:                                 | 0.19 0.18                                  |                        |
| Maximum                                             | 0.7                                        | OK                     |
| 9 Summertime temperature                            |                                            |                        |
| Overheating risk (East Anglia):                     | Slight                                     | ОК                     |
| Based on:                                           |                                            |                        |
| Overshading:                                        | Average or unknown                         |                        |
| Windows facing: North                               | 4.53m <sup>2</sup> , Overhang twice as wid | e as window, ratio NaN |
| Windows facing: West                                | 4.53m <sup>2</sup> , Overhang twice as wid | e as window, ratio NaN |
| Ventilation rate:                                   | 4.00                                       |                        |
| Blinds/curtains:                                    | Dark-coloured curtain or                   | roller blind           |
|                                                     | shutter closed 100% of d                   | aylight hours          |
| 10 Key features                                     |                                            |                        |
| Windows U-value                                     | 1.2 W/m²K                                  |                        |
| Doors U-value                                       | 1 W/m²K                                    |                        |

## **SAP Input**

| Property Details: C                                                                                                                                                                                           | OPP-074343 Plot 98 (Bl                                           | ock 21)                                                                                                 |                                                                 |                                    |                       |                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|-----------------------|----------------------------------------------------------------|
| Address:<br>Located in:<br>Region:<br>UPRN:<br>Date of assessn                                                                                                                                                | nent:                                                            | Plot 98 (Block 21), Beaul<br>England<br>East Anglia<br>30 March 2022                                    | ieu Zone Q, Cheln                                               | msford                             |                       |                                                                |
| Date of certifica<br>Assessment typ                                                                                                                                                                           | e:                                                               | 30 March 2022<br>New dwelling design stag<br>New dwelling                                               | је                                                              |                                    |                       |                                                                |
| Transaction typ<br>Tenure type:<br>Related party d<br>Thermal Mass P<br>Dwelling desigr                                                                                                                       | isclosure:<br>Parameter:                                         | Unknown<br>No related party<br>Calculated 150.61<br>n 125 litres per Persor                             | ו per day: True                                                 | <u>Ş</u>                           |                       |                                                                |
| Property description                                                                                                                                                                                          | on:                                                              |                                                                                                         |                                                                 |                                    |                       |                                                                |
| Dwelling type:<br>Detachment:                                                                                                                                                                                 |                                                                  | Flat                                                                                                    |                                                                 |                                    |                       |                                                                |
| Year Completed:                                                                                                                                                                                               |                                                                  | 2022                                                                                                    | (                                                               | Ctorov boight                      |                       |                                                                |
| Floor Location:<br>Floor 0                                                                                                                                                                                    |                                                                  | Floor area:<br>49.28 m <sup>2</sup>                                                                     |                                                                 | Storey height<br>2.37 m            |                       |                                                                |
| Living area:<br>Front of dwelling                                                                                                                                                                             | faces:                                                           | 24.02 m <sup>2</sup> (fraction 0.48)<br>South                                                           | 7)                                                              |                                    |                       |                                                                |
| Opening types:                                                                                                                                                                                                |                                                                  |                                                                                                         |                                                                 |                                    |                       |                                                                |
| Name:<br>Front Door<br>Rear<br>Side                                                                                                                                                                           | Source:<br>Manufacturer<br>Manufacturer<br>Manufacturer          | Type:<br>Solid<br>Windows<br>Windows                                                                    |                                                                 | 0.05, soft coat<br>0.05, soft coat | Argon:<br>Yes<br>Yes  | Frame:<br>PVC-U<br>PVC-U<br>PVC-U                              |
| Name:                                                                                                                                                                                                         | Gap:                                                             | Frame Facto                                                                                             |                                                                 | U-value:                           | Area:                 | No. of Openings                                                |
| Front Door<br>Rear                                                                                                                                                                                            | mm<br>16mm or more                                               | 0.7                                                                                                     | 0<br>0.63                                                       | 1<br>1.2                           | 2.1<br>4.53           | 1<br>1                                                         |
| Side                                                                                                                                                                                                          | 16mm or more                                                     |                                                                                                         | 0.63                                                            | 1.2                                | 4.53                  | 1                                                              |
|                                                                                                                                                                                                               |                                                                  | Location:                                                                                               | Orient:                                                         |                                    | Width:<br>0           | Height:                                                        |
| Name:<br>Front Door                                                                                                                                                                                           | Type-Name:                                                       | Staircase Wall                                                                                          | South                                                           |                                    |                       | 0                                                              |
|                                                                                                                                                                                                               | Type-Name:                                                       |                                                                                                         | South<br>North<br>West                                          |                                    | 0<br>0                | 0<br>0<br>0                                                    |
| Front Door<br>Rear<br>Side<br>Overshading:                                                                                                                                                                    |                                                                  | Staircase Wall<br>External Wall                                                                         | North                                                           |                                    |                       | 0                                                              |
| Front Door<br>Rear<br>Side                                                                                                                                                                                    |                                                                  | Staircase Wall<br>External Wall<br>External Wall                                                        | North                                                           |                                    |                       | 0                                                              |
| Front Door<br>Rear<br>Side<br>Overshading:                                                                                                                                                                    | Gross area: Ope                                                  | Staircase Wall<br>External Wall<br>External Wall                                                        | North                                                           | Ru value:                          |                       | 0<br>0                                                         |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:                                                                                                                                       | Gross area: Ope                                                  | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West                                                   | Ru value:<br>0<br>0.82             | 0                     | 0<br>0                                                         |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:<br>External Elements<br>External Wall<br>Staircase Wall<br>Internal Elements<br>IW Timber                                             | Gross area: Ope<br>35.64 9.<br>14.22 2.                          | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West<br>U-value:<br>0.24                               | 0                                  | 0<br>Curtain<br>False | 0<br>0<br>wall: Kappa:<br>60                                   |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:<br>External Elements<br>External Wall<br>Staircase Wall<br>Internal Elements<br>IW Timber<br>Party Elements<br>Party Wall             | Gross area: Ope<br>35.64 9.<br>14.22 2.<br>100<br>16.68          | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West<br>U-value:<br>0.24                               | 0                                  | 0<br>Curtain<br>False | 0<br>0<br>wall: Kappa:<br>60<br>60<br>60<br>9<br>45            |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:<br>External Elements<br>External Wall<br>Staircase Wall<br>Internal Elements<br>IW Timber<br>Party Elements                           | Gross area: Ope<br>35.64 9.<br>14.22 2.<br>100                   | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West<br>U-value:<br>0.24                               | 0                                  | 0<br>Curtain<br>False | 0<br>0<br>wall: Kappa:<br>60<br>60<br>60<br>9                  |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:<br>External Elements<br>External Wall<br>Staircase Wall<br>Internal Elements<br>IW Timber<br>Party Elements<br>Party Wall<br>PC       | Gross area: Ope<br>35.64 9.<br>14.22 2.<br>100<br>16.68<br>49.28 | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West<br>U-value:<br>0.24                               | 0                                  | 0<br>Curtain<br>False | 0<br>0<br>wall: Kappa:<br>60<br>60<br>60<br>9<br>9<br>45<br>30 |
| Front Door<br>Rear<br>Side<br>Overshading:<br>Opaque Elements:<br>Type:<br>External Elements<br>External Wall<br>Staircase Wall<br>Internal Elements<br>IW Timber<br>Party Elements<br>Party Wall<br>PC<br>PF | Gross area: Ope<br>35.64 9.<br>14.22 2.<br>100<br>16.68<br>49.28 | Staircase Wall<br>External Wall<br>External Wall<br>Average or unknown<br>enings: Net area:<br>06 26.58 | North<br>West<br>U-value:<br>0.24<br>0.27<br>PSI-values) Y-Valu | 0<br>0.82                          | 0<br>Curtain<br>False | 0<br>0<br>wall: Kappa:<br>60<br>60<br>60<br>9<br>9<br>45<br>30 |

# **SAP Input**

| Approved source<br>Approved source<br>Approved source<br>Approved source<br>Approved source<br>Approved source                          | 5<br>14.44<br>42.08<br>4.74<br>4.74<br>14.08                                       | 0.013<br>0.05<br>0.07<br>0.068<br>-0.0035<br>0.04                                                                                          | Sill<br>Jamb<br>Intermediate floor between dwellings<br>Corner (normal)<br>Party wall between dwellings<br>Intermediate floor between dwellings (in blocks of flats) |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ventilation:                                                                                                                            |                                                                                    |                                                                                                                                            |                                                                                                                                                                      |
| Pressure test:<br>Ventilation:<br>Number of chimneys:                                                                                   |                                                                                    | d whole hou<br>del: Greenw<br>ans in Wetr                                                                                                  | vood Unity CV2GIP<br>oom: Kitchen 1 Other 1                                                                                                                          |
| Number of open flues:<br>Number of fans:<br>Number of sides sheltered:<br>Pressure test:<br>Main heating system:                        | 0<br>2<br>5                                                                        |                                                                                                                                            |                                                                                                                                                                      |
| Main heating system:                                                                                                                    | Gas boilers a<br>Fuel: mains ç<br>Info Source:                                     | nd oil boile<br>gas<br>Boiler Data<br>ev 492, pro<br>Potterton<br>ax Ultra<br>er: Combi 3<br>r)<br>n radiators<br>t space: Ye<br>npensator | abase<br>duct index 017616) SEDBUK2009 89.1%<br>33 ErP                                                                                                               |
| Main heating Control:                                                                                                                   | , i i i i i i i i i i i i i i i i i i i                                            | •                                                                                                                                          |                                                                                                                                                                      |
| Main heating Control:                                                                                                                   | Time and ten<br>Control code<br>Boiler interloo                                    | : 2110                                                                                                                                     | zone control                                                                                                                                                         |
| Secondary heating system:                                                                                                               |                                                                                    |                                                                                                                                            |                                                                                                                                                                      |
| Secondary heating system:<br>Water heating:                                                                                             | None                                                                               |                                                                                                                                            |                                                                                                                                                                      |
| Water heating:                                                                                                                          | From main h<br>Water code:<br>Fuel :mains g<br>No hot water<br>Solar panel:        | 901<br>gas<br>cylinder                                                                                                                     | em                                                                                                                                                                   |
| Others:                                                                                                                                 |                                                                                    |                                                                                                                                            |                                                                                                                                                                      |
| Electricity tariff:<br>In Smoke Control Area:<br>Conservatory:<br>Low energy lights:<br>Terrain type:<br>EPC language:<br>Wind turbine: | standard tari<br>Unknown<br>No conservat<br>100%<br>Low rise urba<br>English<br>No | tory                                                                                                                                       | an                                                                                                                                                                   |
| Disata da la c                                                                                                                          | Mana                                                                               |                                                                                                                                            |                                                                                                                                                                      |

None

Photovoltaics:

# SAP Input

Assess Zero Carbon Home: No

|                                                             |                            |                         | User D     | etails:      |             |             |           |             |                         |              |
|-------------------------------------------------------------|----------------------------|-------------------------|------------|--------------|-------------|-------------|-----------|-------------|-------------------------|--------------|
| Assessor Name:                                              | Matthew Stainrod           |                         |            | Stroma       | a Num       | ber:        |           | STRO        | 023501                  |              |
| Software Name:                                              | Stroma FSAP 200            | 09                      |            | Softwa       |             |             |           | Versio      | n: 1.5.1.8              |              |
|                                                             |                            | Pr                      | operty A   | Address:     | OPP-07      | 74343 PI    | lot 98 (B | lock 21)    |                         |              |
| Address :                                                   | Plot 98 (Block 21),        | Beaulieu 2              | Zone Q     | , Chelms     | ford        |             |           |             |                         |              |
| 1. Overall dwelling dimer                                   | nsions:                    |                         |            |              |             |             |           |             |                         |              |
|                                                             |                            |                         | Area       | a(m²)        |             | Ave He      | eight(m)  |             | Volume(m <sup>3</sup> ) | _            |
| Ground floor                                                |                            |                         | 49         | 9.28         | (1a) x      | 2.          | .37       | (2a) =      | 116.79                  | (3a)         |
| Total floor area TFA = (1a                                  | a)+(1b)+(1c)+(1d)+(1d)     | ə)+(1n)                 | ) 49       | 9.28         | (4)         |             |           |             |                         |              |
| Dwelling volume                                             |                            |                         |            |              | (3a)+(3b)   | +(3c)+(3d   | )+(3e)+   | .(3n) =     | 116.79                  | (5)          |
| 2. Ventilation rate:                                        |                            |                         |            |              |             |             |           |             |                         |              |
|                                                             |                            | Secondary heating       | y          | other        |             | total       |           |             | m <sup>3</sup> per hour |              |
| Number of chimneys                                          |                            | 0                       | + [        | 0            | ] = [       | 0           | x 4       | 40 =        | 0                       | (6a)         |
| Number of open flues                                        |                            | 0                       | i + Г      | 0            | ] = [       | 0           | x 2       | 20 =        | 0                       | (6b)         |
| Number of intermittent far                                  |                            |                         |            |              | л с<br>Г    | 0           | x         | 10 =        | 0                       | (7a)         |
| Number of passive vents                                     |                            |                         |            |              |             | 0           | x         | 10 =        | 0                       | (7b)         |
| Number of flueless gas fir                                  | es                         |                         |            |              |             | 0           | x 4       | 40 =        | 0                       | (7c)         |
|                                                             |                            |                         |            |              | L           |             |           | I           |                         | J            |
|                                                             |                            |                         |            |              |             |             |           | Air ch      | anges per ho            | ur           |
| Infiltration due to chimney                                 |                            |                         |            |              |             | 0           |           | ÷ (5) =     | 0                       | (8)          |
| If a pressurisation test has be                             |                            | led, proceed            | to (17), o | otherwise c  | ontinue fro | om (9) to ( | 16)       |             |                         | ٦            |
| Number of storeys in th<br>Additional infiltration          | e dwelling (ns)            |                         |            |              |             |             | [(0)      | -1]x0.1 =   | 0                       | (9)          |
| Structural infiltration: 0.2                                | 25 for steel or timber     | frame or i              | 0 35 for   | masonr       | v constr    | uction      | [(9)      | - 1jx0. i = | 0                       | (10)<br>(11) |
| if both types of wall are pre<br>deducting areas of opening | esent, use the value corre |                         |            |              |             | uction      |           | l           | 0                       |              |
| If suspended wooden fl                                      | - · · ·                    | led) or 0. <sup>2</sup> | 1 (seale   | d), else (   | enter 0     |             |           |             | 0                       | (12)         |
| If no draught lobby, ent                                    | er 0.05, else enter 0      |                         |            |              |             |             |           |             | 0                       | (13)         |
| Percentage of windows                                       | and doors draught s        | tripped                 |            |              |             |             |           | İ           | 0                       | (14)         |
| Window infiltration                                         |                            |                         |            | 0.25 - [0.2  | x (14) ÷ 1  | = [00       |           |             | 0                       | (15)         |
| Infiltration rate                                           |                            |                         |            | (8) + (10) + | + (11) + (1 | 2) + (13) + | + (15) =  |             | 0                       | (16)         |
| Air permeability value, o                                   | • •                        |                         | •          | •            | •           | etre of e   | nvelope   | area        | 5                       | (17)         |
| If based on air permeabilit                                 | •                          |                         |            |              |             |             |           |             | 0.25                    | (18)         |
| Air permeability value applies                              |                            | s been done             | e or a deg | iree air per | meability i | is being us | sed       | ſ           | _                       |              |
| Number of sides on which<br>Shelter factor                  | Ishellered                 |                         |            | (20) = 1 - [ | 0.075 x (1  | 9)] =       |           |             | 2<br>0.85               | (19)<br>(20) |
| Infiltration rate incorporati                               | ng shelter factor          |                         |            | (21) = (18)  |             |             |           |             | 0.00                    | (21)         |
| Infiltration rate modified for                              | -                          | d                       |            |              |             |             |           | l           | 0.21                    |              |
|                                                             | Mar Apr May                | Jun                     | Jul        | Aug          | Sep         | Oct         | Nov       | Dec         |                         |              |
| Monthly average wind spe                                    | eed from Table 7           |                         |            |              |             |             |           |             |                         |              |
| (22)m= 5.4 5.1 5                                            | 5.1 4.5 4.1                | 3.9                     | 3.7        | 3.7          | 4.2         | 4.5         | 4.8       | 5.1         |                         |              |
| Wind Easter (22a) m (22                                     | )m : 1                     |                         |            |              |             |             |           |             |                         |              |
| Wind Factor (22a)m = (22<br>(22a)m = 1.35 1.27 1            | .27 1.12 1.02              | 0.98                    | 0.92       | 0.92         | 1.05        | 1.12        | 1.2       | 1.27        |                         |              |
|                                                             |                            | 0.00                    | 0.0L       | 0.02         |             |             |           | ,           |                         |              |

| Adjust   | ed infiltr              | ation rat  | e (allowi   | ng for sl   | nelter an                 | d wind s    | peed) =     | (21a) x         | (22a)m                                          | -                      |                  |           | _     |        |        |
|----------|-------------------------|------------|-------------|-------------|---------------------------|-------------|-------------|-----------------|-------------------------------------------------|------------------------|------------------|-----------|-------|--------|--------|
|          | 0.29                    | 0.27       | 0.27        | 0.24        | 0.22                      | 0.21        | 0.2         | 0.2             | 0.22                                            | 0.24                   | 0.26             | 0.27      |       |        |        |
|          | ate effec<br>echanica   |            | -           | rate for t  | he appli                  | cable ca    | se          |                 |                                                 |                        |                  |           |       |        | (23a)  |
|          |                         |            |             | endix N. (2 | 23b) = (23a               | i) x Fmv (e | equation (N | N5)) . othe     | rwise (23b                                      | ) = (23a)              |                  |           |       | ).5    | (23b)  |
|          |                         | • •        | 0 11        |             | allowing f                | , (         | • •         | <i>,,</i> .     |                                                 | , ( ,                  |                  |           |       | 0.5    | (23c)  |
|          |                         |            | -           | -           | -                         |             |             |                 |                                                 | 2b)m + (2              | 23h) <b>x</b> [' | 1 – (23c) |       | -      | _(200) |
| (24a)m=  | <b></b>                 | 0          | 0           | 0           | 0                         | 0           | 0           | 0               | 0                                               | 0                      | 0                | 0         | ]     |        | (24a)  |
|          |                         | d mech:    | anical ve   | ntilation   | without                   | heat rec    | overv (N    | L<br>/\\/) (24b | 1 = (2)                                         | 2b)m + (2              | 23b)             |           | J     |        |        |
| (24b)m=  | 0                       | 0          | 0           | 0           | 0                         | 0           | 0           | 0               | 0                                               | 0                      | 0                | 0         | 1     |        | (24b)  |
|          | whole h                 | ouse ex    | tract ver   | tilation of | or positiv                | re input v  | /entilatic  | n from c        | utside                                          |                        |                  | <u> </u>  | J     |        |        |
| ,        |                         |            |             |             | •                         | •           |             |                 |                                                 | .5 × (23b              | )                |           |       |        |        |
| (24c)m=  | 0.54                    | 0.52       | 0.52        | 0.5         | 0.5                       | 0.5         | 0.5         | 0.5             | 0.5                                             | 0.5                    | 0.5              | 0.52      | ]     |        | (24c)  |
| ,        |                         |            |             |             | se positiv                |             |             |                 |                                                 |                        |                  |           | -     |        |        |
|          | <u>, ,</u>              |            |             |             | b)m othe                  | ,           | ,           | 1               | 2b)m² x                                         | 0.5]                   |                  | <u> </u>  | 1     |        | ()     |
| (24d)m=  |                         | 0          | 0           | 0           | 0                         | 0           | 0           | 0               | 0                                               | 0                      | 0                | 0         |       |        | (24d)  |
|          | <b></b>                 |            |             | · ·         | i) or (24b                | , <u> </u>  | , ,         | r               | r <u>,                                     </u> |                        |                  |           | 1     |        | (05)   |
| (25)m=   | 0.54                    | 0.52       | 0.52        | 0.5         | 0.5                       | 0.5         | 0.5         | 0.5             | 0.5                                             | 0.5                    | 0.5              | 0.52      |       |        | (25)   |
| 3. He    | at losse                | s and he   | eat loss p  | paramet     | er:                       |             |             |                 |                                                 |                        |                  |           |       |        |        |
| ELEN     | <b>IENT</b>             | Gros       |             | Openin      | -                         | Net Ar      |             | U-valu          |                                                 | AXU                    |                  | k-value   |       | AX     |        |
| Dooro    |                         | area       | (m²)        | n           | <u> </u> 2                | A ,n        |             | W/m2            | r                                               | (W/ł                   | <)<br>           | kJ/m²∙    | ĸ     | kJ/k   |        |
| Doors    |                         | . 1        |             |             |                           | 2.1         | ×           | 1               | =                                               | 2.1                    |                  |           |       |        | (26)   |
|          | ws Type                 |            |             |             |                           | 4.53        |             | /[1/( 1.2 )+    | L                                               | 5.19                   |                  |           |       |        | (27)   |
|          | ws Type                 |            |             |             |                           | 4.53        |             | /[1/( 1.2 )+    | 0.04] =                                         | 5.19                   | ╡,               |           | — r   |        | (27)   |
| Walls    |                         | 35.6       | 64          | 9.06        | 3                         | 26.58       | ×           | 0.24            | = [                                             | 6.38                   | _                | 60        |       | 1594.8 | (29)   |
| Walls    |                         | 14.2       |             | 2.1         |                           | 12.12       | ×           | 0.22            | = [                                             | 2.68                   |                  | 60        |       | 727.2  | (29)   |
|          | area of e               | lements    | , m²        |             |                           | 49.86       |             |                 |                                                 |                        |                  |           |       |        | (31)   |
| Party    |                         |            |             |             |                           | 16.68       | x           | 0               | =                                               | 0                      | _ L              | 45        |       | 750.6  | (32)   |
| Party f  | loor                    |            |             |             |                           | 49.28       | ;           |                 |                                                 |                        |                  | 40        |       | 1971.2 | (32a)  |
| Party    | ceiling                 |            |             |             |                           | 49.28       | ;           |                 |                                                 |                        |                  | 30        |       | 1478.4 | (32b)  |
| Interna  | al wall **              |            |             |             |                           | 100         |             |                 |                                                 |                        |                  | 9         |       | 900    | (32c)  |
|          |                         |            |             |             | indow U-va<br>Is and part |             | ated using  | formula 1       | /[(1/U-valu                                     | ıe)+0.04] a            | s given in       | paragraph | h 3.2 |        |        |
|          |                         |            | = S (A x    |             | is and part               |             |             | (26)(30)        | + (32) =                                        |                        |                  |           | 2     | 1.53   | (33)   |
|          | apacity                 |            |             | 0)          |                           |             |             | . , . ,         |                                                 | (30) + (32             | 2) + (32a).      | (32e) =   |       | 2.1999 | (34)   |
|          |                         |            | . ,         | P = Cm -    | - TFA) in                 | n kJ/m²K    |             |                 |                                                 | ÷ (4) =                | / (/             | (/        |       | .6128  | (35)   |
|          |                         | •          | •           |             |                           |             |             | ecisely the     |                                                 | values of              | TMP in Ta        | able 1f   | 100   | .0120  |        |
| can be i | used inste              | ad of a de | tailed calc | ulation.    |                           |             |             |                 |                                                 |                        |                  |           |       |        | _      |
|          | -                       | •          | ,           |             | using Ap                  | •           | <           |                 |                                                 |                        |                  |           | 6     | .41    | (36)   |
|          | s of therma<br>abric he |            | are not kn  | own (36) =  | = 0.15 x (3               | 1)          |             |                 | (33) -                                          | (36) =                 |                  |           |       | 7.04   |        |
|          |                         |            | alculated   | monthl      | v                         |             |             |                 |                                                 | (30) =<br>= 0.33 × (2) | 25)m x (5)       |           | 27    | 7.94   | (37)   |
| v Gritik | Jan                     | Feb        | Mar         | Apr         | y<br>May                  | Jun         | Jul         | Aug             | Sep                                             | Oct                    | Nov              | Dec       | 1     |        |        |
|          |                         |            |             | י אי        | ,                         | 0.011       | 0.01        |                 |                                                 |                        |                  |           | J     |        |        |

| (38)m=          | 20.69             | 20.08               | 20.08                   | 19.27            | 19.27            | 19.27       | 19.27             | 19.27        | 19.27        | 19.27                  | 19.46                  | 20.08      |         | (38)         |
|-----------------|-------------------|---------------------|-------------------------|------------------|------------------|-------------|-------------------|--------------|--------------|------------------------|------------------------|------------|---------|--------------|
| Heat tr         | ansfer o          | coefficie           | nt, W/K                 |                  |                  |             |                   |              | (39)m        | = (37) + (3            | 38)m                   |            |         |              |
| (39)m=          | 48.63             | 48.02               | 48.02                   | 47.21            | 47.21            | 47.21       | 47.21             | 47.21        | 47.21        | 47.21                  | 47.4                   | 48.02      |         |              |
| Heat la         | se para           | motor (l            | HLP), W/                | /m2k             |                  |             |                   |              |              | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub>  | 12 /12=    | 47.55   | (39)         |
| (40)m=          | 0.99              | 0.97                | 0.97                    | 0.96             | 0.96             | 0.96        | 0.96              | 0.96         | 0.96         | 0.96                   | 0.96                   | 0.97       |         |              |
| (10)            | 0.00              | 0.01                | 0.07                    | 0.00             | 0.00             | 0.00        | 0.00              | 0.00         |              |                        | Sum(40)1.              |            | 0.96    | (40)         |
| Numbe           | er of day         | /s in mo            | nth (Tab                | le 1a)           |                  | -           |                   | -            | -            | 5                      |                        |            |         |              |
|                 | Jan               | Feb                 | Mar                     | Apr              | May              | Jun         | Jul               | Aug          | Sep          | Oct                    | Nov                    | Dec        |         |              |
| (41)m=          | 31                | 28                  | 31                      | 30               | 31               | 30          | 31                | 31           | 30           | 31                     | 30                     | 31         |         | (41)         |
|                 |                   |                     |                         |                  |                  |             |                   |              |              |                        |                        |            |         |              |
| 4. Wa           | iter heat         | ting ene            | rgy requi               | irement:         |                  |             |                   |              |              |                        |                        | kWh/ye     | ar:     |              |
| Δesum           | ed occi           | ipancy,             | N                       |                  |                  |             |                   |              |              |                        |                        | 07         |         | (42)         |
| if TF           |                   | 9, N = 1            | + 1.76 x                | [1 - exp         | (-0.0003         | 849 x (TF   | FA -13.9          | )2)] + 0.0   | 0013 x (1    | FA -13.                |                        | 67         |         | (42)         |
| Annual          | laverag           | e hot wa            | ater usag               |                  |                  |             |                   |              |              |                        |                        | .84        |         | (43)         |
|                 |                   | -                   | hot water<br>person per | • •              |                  | -           | -                 | to achieve   | a water us   | e target o             | f                      |            |         |              |
| normore         |                   | - · ·               | r                       |                  | r                |             | I                 | A            | Can          | Oct                    | Nov                    | Dee        |         |              |
| Hot wate        | Jan<br>er usage i | Feb<br>n litres per | Mar<br>day for ea       | Apr<br>ach month | May<br>Vd.m = fa | Jun         | Jul<br>Table 1c x | Aug<br>(43)  | Sep          | Oct                    | Nov                    | Dec        |         |              |
| (44)m=          | 81.22             | 78.27               | 75.31                   | 72.36            | 69.41            | 66.45       | 66.45             | 69.41        | 72.36        | 75.31                  | 78.27                  | 81.22      |         |              |
| (44)11-         | 01.22             | 10.21               | 75.51                   | 72.50            | 03.41            | 00.45       | 00.45             | 03.41        |              |                        | m(44) <sub>112</sub> = |            | 886.04  | (44)         |
| Energy o        | content of        | hot water           | used - cal              | culated me       | onthly $= 4$ .   | 190 x Vd,r  | n x nm x D        | 0Tm / 3600   |              |                        | · · ·                  |            |         |              |
| (45)m=          | 120.74            | 105.6               | 108.97                  | 95               | 91.15            | 78.66       | 72.89             | 83.64        | 84.64        | 98.64                  | 107.67                 | 116.93     |         |              |
|                 |                   |                     |                         |                  |                  |             |                   |              |              | Fotal = Su             | m(45) <sub>112</sub> = | =          | 1164.52 | (45)         |
| lf instant      | aneous w          | ater heati          | ng at point             | of use (no       | o hot water      | r storage), | enter 0 in        | boxes (46    | ) to (61)    |                        |                        |            |         |              |
| (46)m=<br>Water | 18.11<br>storage  | 15.84               | 16.34                   | 14.25            | 13.67            | 11.8        | 10.93             | 12.55        | 12.7         | 14.8                   | 16.15                  | 17.54      |         | (46)         |
|                 | 0                 |                     | clared lo               | oss facto        | or is knov       | vn (kWh     | /day):            |              |              |                        |                        | 0          |         | (47)         |
|                 |                   |                     | m Table                 |                  |                  | ,           | 2,                |              |              |                        |                        | 0          |         | (48)         |
|                 |                   |                     | · storage               |                  | ear              |             |                   | (47) x (48)  | ) =          |                        |                        | 0          |         | (49)         |
| If manu         | ufacture          | r's decla           | ared cylir              | nder loss        | s factor is      |             |                   |              |              |                        |                        |            |         |              |
| •               |                   |                     | ) includir              |                  |                  | -           |                   | •            |              |                        |                        | 0          |         | (50)         |
|                 | -                 | -                   | I no tank in            | •                |                  |             | . ,               | antor 101 in | hov (EQ)     |                        |                        |            |         |              |
|                 |                   |                     | t water (th             |                  |                  |             |                   | enter 0 m    | DOX (50)     |                        |                        |            |         |              |
|                 |                   | -                   | factor fr               | om Tab           | ie z (kvv        | n/litre/da  | iy)               |              |              |                        |                        | 0          |         | (51)         |
|                 |                   | from Ta             | ble 2a<br>m Table       | 2h               |                  |             |                   |              |              |                        |                        | 0          |         | (52)<br>(53) |
|                 |                   |                     | storage                 |                  | oor              |             |                   | ((50) x (51  | ) x (52) x ( | (52) -                 |                        | 0          |         |              |
| •••             |                   | 54) in (5           | -                       | , KVVII/ yv      | al               |             |                   | ((JU) X (J)  | )            | (33) =                 |                        | 0          |         | (54)<br>(55) |
|                 | , ,               | , ,                 | culated f               | for each         | month            |             |                   | ((56)m = (   | 55) × (41)r  | n                      | L'                     | •          |         | (00)         |
| (56)m=          | 0                 | 0                   | 0                       | 0                | 0                | 0           | 0                 | 0            | 0            | 0                      | 0                      | 0          |         | (56)         |
|                 | Ŧ                 | -                   | -                       | -                | -                |             | -                 | -            | ÷            | -                      |                        | m Appendix | ٢H      | (00)         |
| (57)m=          | 0                 | 0                   | 0                       | 0                | 0                | 0           | 0                 | 0            | 0            | 0                      | 0                      | 0          |         | (57)         |
| (07)11-         | 0                 | U U                 |                         | U U              |                  | , J         |                   |              | , U          | 0                      | , U                    | v          |         | (0,)         |

| Primar   | y circuit    | loss (ar   | nual) fro  | om Table    | e 3       |             |                |                      |                  |                 |             | 0           |               | (58) |
|----------|--------------|------------|------------|-------------|-----------|-------------|----------------|----------------------|------------------|-----------------|-------------|-------------|---------------|------|
| Primar   | y circuit    | loss cal   | culated    | for each    | month (   | 59)m = (    | (58) ÷ 36      | 65 × (41)            | m                |                 |             |             |               |      |
| (moo     | dified by    | factor fi  | rom Tab    | le H5 if t  | here is s | solar wat   | er heati       | ng and a             | cylinde          | r thermo        | stat)       |             |               |      |
| (59)m=   | 0            | 0          | 0          | 0           | 0         | 0           | 0              | 0                    | 0                | 0               | 0           | 0           |               | (59) |
| Combi    | loss ca      | lculated   | for each   | month (     | (61)m =   | (60) ÷ 36   | 65 × (41       | )m                   |                  |                 |             |             |               |      |
| (61)m=   | 21.69        | 19.57      | 21.62      | 20.87       | 21.53     | 20.8        | 21.47          | 21.51                | 20.84            | 21.58           | 20.94       | 21.68       |               | (61) |
| Total h  | eat req      | uired for  | water h    | eating ca   | alculated | for eac     | h month        | (62)m =              | 0.85 × (         | (45)m +         | (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 142.43       | 125.16     | 130.59     | 115.87      | 112.69    | 99.46       | 94.36          | 105.15               | 105.48           | 120.22          | 128.62      | 138.6       |               | (62) |
| Solar DH | -<br>W input | calculated | using App  | endix G or  | Appendix  | H (negati   | ve quantity    | y) (enter '0         | ' if no sola     | r contribut     | ion to wate | er heating) |               |      |
| (add a   | dditiona     | l lines if | FGHRS      | and/or \    | WWHRS     | applies     | , see Ap       | pendix C             | G)               |                 |             |             |               |      |
| (63)m=   | 0            | 0          | 0          | 0           | 0         | 0           | 0              | 0                    | 0                | 0               | 0           | 0           |               | (63) |
| Output   | from w       | ater hea   | ter        |             |           |             |                |                      |                  |                 | •           |             |               |      |
| (64)m=   | 142.43       | 125.16     | 130.59     | 115.87      | 112.69    | 99.46       | 94.36          | 105.15               | 105.48           | 120.22          | 128.62      | 138.6       |               |      |
|          |              |            |            |             |           |             |                | Outp                 | out from w       | ater heate      | r (annual)₁ | 12          | 1418.63       | (64) |
| Heat g   | ains fro     | m water    | heating    | kWh/m       | onth 0.2  | 5 x [0.85   | <b>×</b> (45)m | n + (61)n            | n] + 0.8 :       | x [(46)m        | + (57)m     | ı + (59)m   | n]            |      |
| (65)m=   | 45.57        | 40         | 41.64      | 36.81       | 35.69     | 31.35       | 29.6           | 33.19                | 33.35            | 38.19           | 41.04       | 44.3        |               | (65) |
| inclu    | ide (57)     | m in calo  | culation   | of (65)m    | only if c | ylinder i   | s in the o     | dwelling             | or hot w         | ater is fr      | om com      | munity h    | leating       |      |
| 5. Int   | ernal ga     | ains (see  | e Table 5  | 5 and 5a    | ):        | -           |                | -                    |                  |                 |             | -           | -             |      |
|          |              | is (Table  |            |             |           |             |                |                      |                  |                 |             |             |               |      |
| motab    | Jan          | Feb        | Mar        | Apr         | May       | Jun         | Jul            | Aug                  | Sep              | Oct             | Nov         | Dec         |               |      |
| (66)m=   | 100.14       | 100.14     | 100.14     | 100.14      | 100.14    | 100.14      | 100.14         | 100.14               | 100.14           | 100.14          | 100.14      | 100.14      |               | (66) |
| Lightin  | g gains      | (calcula   | ted in A   | pendix      | L, equat  | ion L9 o    | r L9a), a      | lso see <sup>-</sup> | Table 5          |                 |             |             |               |      |
| (67)m=   | 32.98        | 29.29      | 23.82      | 18.04       | 13.48     | 11.38       | 12.3           | 15.99                | 21.46            | 27.24           | 31.8        | 33.9        |               | (67) |
| Applia   | nces ga      | ins (calc  | ulated ir  | Append      | dix L, eq | uation L    | 13 or L1       | 3a), also            | see Ta           | ble 5           |             |             |               |      |
| (68)m=   | 216.96       | 219.21     | 213.54     | 201.46      | 186.21    | 171.89      | 162.31         | 160.06               | 165.73           | 177.81          | 193.06      | 207.39      |               | (68) |
| Cookir   | ng gains     | (calcula   | ted in A   | ppendix     | L, equat  | ion L15     | or L15a        | ), also se           | e Table          | 5               |             |             |               |      |
|          | 46.68        | 46.68      | 46.68      | 46.68       | 46.68     | 46.68       | 46.68          | 46.68                | 46.68            | 46.68           | 46.68       | 46.68       |               | (69) |
| Pumps    | and fai      | ns gains   | (Table (   | 5a)         |           |             |                |                      |                  | 1               |             |             |               |      |
| (70)m=   | 10           | 10         | 10         | , 10        | 10        | 10          | 10             | 10                   | 10               | 10              | 10          | 10          |               | (70) |
| Losses   | se.g. ev     | aporatio   | n (nega    | tive valu   | es) (Tab  | le 5)       |                |                      |                  | 1               |             |             |               |      |
| (71)m=   | -66.76       | -66.76     | -66.76     | -66.76      | -66.76    | ,<br>-66.76 | -66.76         | -66.76               | -66.76           | -66.76          | -66.76      | -66.76      |               | (71) |
| Water    | heating      | gains (T   | able 5)    | 1           | 1         | 1           | 1              | 1                    | 1                | 1               | 1           |             |               |      |
| (72)m=   | 61.25        | 59.53      | 55.96      | 51.12       | 47.97     | 43.55       | 39.79          | 44.61                | 46.32            | 51.34           | 57          | 59.54       |               | (72) |
|          | nternal      | gains =    | I          |             |           | (66)        | um + (67)m     | I<br>1 + (68)m +     | L<br>⊦ (69)m + I | l<br>(70)m + (7 | 1)m + (72)  | m           |               |      |
| (73)m=   | 401.25       | 398.09     | 383.39     | 360.68      | 337.73    | 316.88      | 304.46         | 310.72               | 323.58           | 346.45          | 371.91      | 390.89      |               | (73) |
| . ,      | lar gains    |            | I          | I           | I         | I           | L              | 1                    | L                | I               | I           | I           |               |      |
|          |              |            | using sola | r flux from | Table 6a  | and assoc   | iated equa     | ations to co         | onvert to th     | e applicat      | le orientat | ion.        |               |      |
| Orienta  | ation: A     | Access F   | actor      | Area        |           | Flu         | X              |                      | g                | _               | FF          |             | Gains         |      |

|       |      | able 6d |   | m²   |   | Table 6a |   | Table 6b |   | Table 6c |   | (W)   |      |
|-------|------|---------|---|------|---|----------|---|----------|---|----------|---|-------|------|
| North | 0.9x | 0.77    | x | 4.53 | x | 10.73    | × | 0.63     | × | 0.7      | = | 14.85 | (74) |
| North | 0.9x | 0.77    | x | 4.53 | x | 20.36    | x | 0.63     | x | 0.7      | = | 28.19 | (74) |

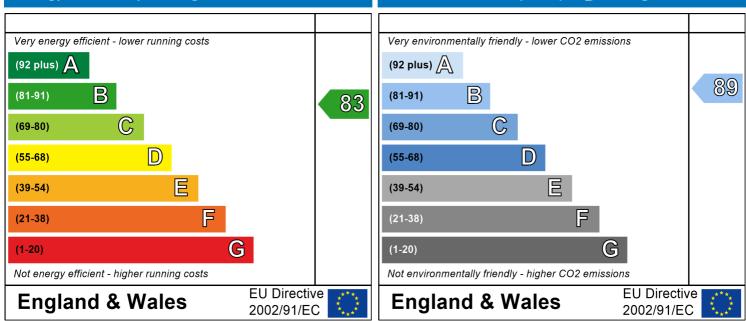
|                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                           | 1                                                                                                      |                                                                                                                                                                                                                                                         |                                                                                |                                                                                               |                                                          |                                           | _                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | ×                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                           | 3.31                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | ×                                                                              | 0.7                                                                                           | =                                                        | 46.11                                     | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                           | 4.64                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 75.64                                     | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                           | 5.22                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 104.13                                    | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                           | 4.09                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 116.42                                    | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                           | 9.12                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 109.54                                    | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                           | 1.56                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 85.23                                     | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                           | 1.09                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 56.88                                     | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                           | 4.81                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 34.35                                     | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                           | 3.22                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 18.3                                      | (74)                                                                                                         |
| North                                                                                                                                                  | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                           | 3.94                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 12.38                                     | (74)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                           | 9.87                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 27.51                                     | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                           | 8.52                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 53.33                                     | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                           | 1.57                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 85.23                                     | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                           | 1.41                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 126.55                                    | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1'                                                                                                                          | 11.22                                                                                                                                     | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 153.98                                    | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1'                                                                                                                          | 16.05                                                                                                                                     | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 160.67                                    | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1'                                                                                                                          | 12.64                                                                                                                                     | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 155.94                                    | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                           | 8.03                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 135.72                                    | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                           | 73.6                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 101.9                                     | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                           | 6.91                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 64.94                                     | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                           | 4.71                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 34.2                                      | (80)                                                                                                         |
| West                                                                                                                                                   | 0.9x                                                                                                                                                  | 0.77                                                                                                                                                                                                                                    | x                                                                                                                                                            | 4.5                                                                                                                                                                     | 53                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                           | 6.39                                                                                                                                      | x                                                                                                      | 0.63                                                                                                                                                                                                                                                    | x                                                                              | 0.7                                                                                           | =                                                        | 22.69                                     | (80)                                                                                                         |
|                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                |                                                                                               |                                                          |                                           |                                                                                                              |
|                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                |                                                                                               |                                                          |                                           |                                                                                                              |
| Solar g                                                                                                                                                | ains in                                                                                                                                               | watts, ca                                                                                                                                                                                                                               | lculated                                                                                                                                                     | for eac                                                                                                                                                                 | h montł                                                                                                                                                 | <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                                                           | (83)m                                                                                                  | n = Sum(74)m                                                                                                                                                                                                                                            | (82)m                                                                          |                                                                                               |                                                          |                                           |                                                                                                              |
| (83)m=                                                                                                                                                 | 42.36                                                                                                                                                 | 81.51                                                                                                                                                                                                                                   | 131.35                                                                                                                                                       | 202.19                                                                                                                                                                  | 258.11                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.08                                                                                                                       | 265.48                                                                                                                                    | <mark>(83)m</mark><br>220                                                                              |                                                                                                                                                                                                                                                         | <mark>(82)</mark> m<br>99.3                                                    | - 1                                                                                           | 35.08                                                    | ]                                         | (83)                                                                                                         |
| (83)m=<br>Total g                                                                                                                                      | 42.36<br>ains — i                                                                                                                                     | 81.51<br>nternal a                                                                                                                                                                                                                      | 131.35<br>nd solar                                                                                                                                           | 202.19<br>(84)m =                                                                                                                                                       | 258.11<br>= (73)m                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83)m                                                                                                                        | , watts                                                                                                                                   | 220                                                                                                    | .95 158.78                                                                                                                                                                                                                                              | 99.3                                                                           | 52.5                                                                                          | I                                                        | ]                                         |                                                                                                              |
| (83)m=                                                                                                                                                 | 42.36                                                                                                                                                 | 81.51                                                                                                                                                                                                                                   | 131.35                                                                                                                                                       | 202.19                                                                                                                                                                  | 258.11                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                           | <u> </u>                                                                                               | .95 158.78                                                                                                                                                                                                                                              |                                                                                | 52.5                                                                                          | 35.08<br>425.96                                          | ]                                         | (83)<br>(84)                                                                                                 |
| (83)m=<br>Total ga<br>(84)m=                                                                                                                           | 42.36<br>ains — i<br>443.61                                                                                                                           | 81.51<br>nternal a                                                                                                                                                                                                                      | 131.35<br>nd solar<br>514.73                                                                                                                                 | 202.19<br>(84)m =<br>562.87                                                                                                                                             | 258.11<br>= (73)m<br>595.84                                                                                                                             | 2<br>+ (8<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83)m                                                                                                                        | , watts                                                                                                                                   | 220                                                                                                    | .95 158.78                                                                                                                                                                                                                                              | 99.3                                                                           | 52.5                                                                                          | I                                                        | ]                                         |                                                                                                              |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea                                                                                                                 | 42.36<br>ains – i<br>443.61<br>an inter                                                                                                               | 81.51<br>nternal a<br>479.61<br>nal temp                                                                                                                                                                                                | 131.35<br>nd solar<br>514.73<br>erature                                                                                                                      | 202.19<br>7 (84)m =<br>562.87<br>(heating                                                                                                                               | 258.11<br>= (73)m<br>595.84<br>  seaso                                                                                                                  | 2<br>+ (i<br>5<br>n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83)m<br>93.96                                                                                                               | , watts<br>569.94                                                                                                                         | 220<br>531                                                                                             | .95 158.78                                                                                                                                                                                                                                              | 99.3                                                                           | 52.5                                                                                          | I                                                        | 21                                        |                                                                                                              |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea<br>Tempo                                                                                                        | 42.36<br>ains – i<br>443.61<br>an inter<br>erature                                                                                                    | 81.51<br>nternal a<br>479.61<br>nal temp                                                                                                                                                                                                | 131.35<br>nd solar<br>514.73<br>erature<br>eating p                                                                                                          | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir                                                                                                                    | 258.11<br>= (73)m<br>595.84<br>  seaso<br>n the liv                                                                                                     | 2<br>+ (i<br>5<br>n)<br>ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83)m<br><sup>93.96</sup><br>area f                                                                                          | , watts<br>569.94<br>from Tab                                                                                                             | 220<br>531                                                                                             | .95 158.78<br>.67 482.35                                                                                                                                                                                                                                | 99.3                                                                           | 52.5                                                                                          | I                                                        | 21                                        | (84)                                                                                                         |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea<br>Tempo                                                                                                        | 42.36<br>ains – i<br>443.61<br>an inter<br>erature                                                                                                    | 81.51<br>nternal a<br>479.61<br>nal temp<br>during h                                                                                                                                                                                    | 131.35<br>nd solar<br>514.73<br>erature<br>eating p                                                                                                          | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir                                                                                                                    | 258.11<br>= (73)m<br>595.84<br>  seaso<br>n the liv                                                                                                     | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83)m<br><sup>93.96</sup><br>area f                                                                                          | , watts<br>569.94<br>from Tab                                                                                                             | 220<br>531<br>ble 9                                                                                    | .95 158.78<br>.67 482.35                                                                                                                                                                                                                                | 99.3                                                                           | 52.5<br>5 424.42                                                                              | I                                                        | 21                                        | (84)                                                                                                         |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea<br>Tempo                                                                                                        | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac                                                                                        | 81.51<br>nternal a<br>479.61<br>nal temp<br>during h                                                                                                                                                                                    | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l                                                                                            | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are                                                                                                       | 258.11<br>= (73)m<br>595.84<br>I season<br>h the liv<br>ea, h1,n                                                                                        | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83)m<br><sup>93.96</sup><br>area f<br>ee Ta                                                                                 | , watts<br>569.94<br>from Tab<br>ble 9a)                                                                                                  | 220<br>531<br>ble 9                                                                                    | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep                                                                                                                                                                                                        | 99.3                                                                           | 52.5<br>5 424.42                                                                              | 425.96                                                   | 21                                        | (84)                                                                                                         |
| (83)m=<br>Total gr<br>(84)m=<br>7. Mer<br>Temp<br>Utilisa<br>(86)m=                                                                                    | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95                                                                         | 81.51<br>nternal a<br>479.61<br>nal temp<br>during h<br>ctor for ga<br>Feb                                                                                                                                                              | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89                                                                             | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81                                                                                        | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,n<br>May<br>0.66                                                                             | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49                                                                             | , watts<br>569.94<br>from Tab<br>ble 9a)<br>Jul<br>0.34                                                                                   | 220<br>531<br>Die 9<br>A<br>0.3                                                                        | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61                                                                                                                                                                                             | 99.3<br>445.7<br>Oc                                                            | 52.5<br>5 424.42                                                                              | 425.96<br>Dec                                            | 21                                        | (84)                                                                                                         |
| (83)m=<br>Total gr<br>(84)m=<br>7. Mer<br>Temp<br>Utilisa<br>(86)m=                                                                                    | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95                                                                         | 81.51<br>nternal a<br>479.61<br>nal temp<br>during h<br>ctor for ga<br>Feb<br>0.93                                                                                                                                                      | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89                                                                             | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81                                                                                        | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,n<br>May<br>0.66                                                                             | 2<br>+ (i<br>5<br>n)<br>ing<br>m (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49                                                                             | , watts<br>569.94<br>from Tab<br>ble 9a)<br>Jul<br>0.34                                                                                   | 220<br>531<br>Die 9<br>A<br>0.3                                                                        | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>-able 9c)                                                                                                                                                                                | 99.3<br>445.7<br>Oc                                                            | 52.5<br>5 424.42<br>t Nov<br>0.93                                                             | 425.96<br>Dec                                            | ]<br>                                     | (84)                                                                                                         |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mean<br>Utilisa<br>(86)m=<br>Mean<br>(87)m=                                                                         | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95<br>interna<br>19.89                                                     | 81.51<br>nternal a<br>479.61<br>during h<br>ctor for ga<br>Feb<br>0.93<br>l tempera<br>20.06                                                                                                                                            | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35                                                        | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.81<br>living are<br>20.63                                                                 | 258.11<br>= (73)m<br>595.84<br>I season<br>the liv<br>ea, h1,n<br>May<br>0.66<br>ea T1 (t<br>20.87                                                      | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97                                                          | , watts<br>569.94<br>From Tab<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99                                                             | 220<br>531<br>Die 9<br>A<br>0.3<br>7 in T<br>20.                                                       | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>-able 9c)                                                                                                                                                                                | 99.3<br>445.7<br>Oc<br>0.83                                                    | 52.5<br>5 424.42<br>t Nov<br>0.93                                                             | 425.96<br>Dec<br>0.95                                    | ]<br><br>]                                | (84)<br>(85)<br>(86)                                                                                         |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mean<br>Utilisa<br>(86)m=<br>Mean<br>(87)m=                                                                         | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95<br>interna<br>19.89                                                     | 81.51<br>nternal a<br>479.61<br>during h<br>ctor for ga<br>Feb<br>0.93<br>l tempera<br>20.06                                                                                                                                            | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35                                                        | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods in<br>iving are<br>Apr<br>0.81<br>living are<br>20.63                                                                 | 258.11<br>= (73)m<br>595.84<br>I season<br>the liv<br>ea, h1,n<br>May<br>0.66<br>ea T1 (t<br>20.87                                                      | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97                                                          | , watts<br>569.94<br>From Tab<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99                                                             | 220<br>531<br>Die 9<br>A<br>0.3<br>7 in T<br>20.                                                       | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)                                                                                                                                                     | 99.3<br>445.7<br>Oc<br>0.83                                                    | 52.5<br>5 424.42<br>t Nov<br>0.93<br>7 20.21                                                  | 425.96<br>Dec<br>0.95                                    | ]<br><br>]<br>]                           | (84)<br>(85)<br>(86)                                                                                         |
| (83)m=<br>Total gr<br>(84)m=<br>7. Mea<br>Temp<br>Utilisa<br>(86)m=<br>(86)m=<br>Mean<br>(87)m=<br>Temp<br>(88)m=                                      | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95<br>interna<br>19.89<br>erature<br>20.1                                  | 81.51nternal a479.61nal tempduring hctor for gaFeb0.93I tempera20.06during h20.11                                                                                                                                                       | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35<br>eating p<br>20.11                                   | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12                                           | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,n<br>May<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12                                  | 2<br>+ ((<br>5<br>n)<br>iing<br>n (s<br>follo<br>2<br>f dw<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>w ste<br>20.97<br>/elling<br>20.12                                       | , watts<br>569.94<br>from Tab<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12                                         | 2200<br>531<br>531<br>0.3<br>7 in T<br>20.<br>8ble §<br>20.                                            | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)                                                                                                                                                     | 99.3<br>445.7<br>0c<br>0.83<br>20.67                                           | 52.5<br>5 424.42<br>t Nov<br>0.93<br>7 20.21                                                  | 425.96<br>Dec<br>0.95<br>19.93                           | ]<br><br>]<br>]                           | (84)<br>(85)<br>(86)<br>(87)                                                                                 |
| (83)m=<br>Total gr<br>(84)m=<br>7. Mea<br>Temp<br>Utilisa<br>(86)m=<br>(86)m=<br>Mean<br>(87)m=<br>Temp<br>(88)m=                                      | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95<br>interna<br>19.89<br>erature<br>20.1                                  | 81.51<br>nternal a<br>479.61<br>nal temp<br>during h<br>ctor for ga<br>Feb<br>0.93<br>I tempera<br>20.06<br>during h                                                                                                                    | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35<br>eating p<br>20.11                                   | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12                                           | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,n<br>May<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12                                  | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f dw<br>2<br>, h2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>w ste<br>20.97<br>/elling<br>20.12                                       | , watts<br>569.94<br>from Tab<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12                                         | 2200<br>531<br>531<br>0.3<br>7 in T<br>20.<br>8<br>ble §<br>20.                                        | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)<br>12 20.12                                                                                                                                         | 99.3<br>445.7<br>0c<br>0.83<br>20.67                                           | 52.5<br>5 424.42<br>1 Nov<br>0.93<br>7 20.21<br>2 20.12                                       | 425.96<br>Dec<br>0.95<br>19.93                           | ]<br><br>]<br>]<br>]                      | (84)<br>(85)<br>(86)<br>(87)                                                                                 |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea<br>Tempo<br>Utilisa<br>(86)m=<br>Mean<br>(87)m=<br>Tempo<br>(88)m=<br>Utilisa<br>(89)m=                         | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>0.95<br>interna<br>19.89<br>erature<br>20.1<br>tion fac<br>0.94                     | 81.51nternal a479.61nal tempduring hctor for gaFeb0.93Il tempera20.06during h20.11ctor for ga0.92                                                                                                                                       | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35<br>eating p<br>20.11<br>ains for r<br>0.87             | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12<br>rest of d<br>0.78                      | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,r<br>May<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12<br>welling,<br>0.61              | 2<br>+ ((i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f dw<br>2<br>f dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97<br>velling<br>20.12<br>,m (se<br>0.43                    | , watts<br>569.94<br>from Tat<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12<br>te Table<br>0.27                     | 2200<br>531<br>531<br>531<br>0.2<br>7 in T<br>20.<br>20.<br>9a)<br>0.2                                 | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)<br>12 20.12<br>28 0.54                                                                                                                              | 99.3<br>445.7<br>0.83<br>20.67<br>20.12                                        | 52.5<br>5 424.42<br>1 Nov<br>0.93<br>7 20.21<br>2 20.12                                       | 425.96<br>Dec<br>0.95<br>19.93<br>20.11                  | ]<br><br>]<br>]<br>]                      | (84)<br>(85)<br>(86)<br>(87)<br>(88)                                                                         |
| (83)m=<br>Total ga<br>(84)m=<br>7. Mea<br>Tempo<br>Utilisa<br>(86)m=<br>Mean<br>(87)m=<br>Tempo<br>(88)m=<br>Utilisa<br>(89)m=                         | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>0.95<br>interna<br>19.89<br>erature<br>20.1<br>tion fac<br>0.94                     | 81.51nternal a479.61nal tempduring hctor for gaFeb0.93Il tempera20.06during h20.11ctor for ga0.92                                                                                                                                       | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35<br>eating p<br>20.11<br>ains for r<br>0.87             | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12<br>rest of d<br>0.78                      | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,r<br>May<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12<br>welling,<br>0.61              | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f dw<br>12<br>f dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97<br>velling<br>20.12<br>,m (se<br>0.43                    | , watts<br>569.94<br>from Tat<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12<br>te Table<br>0.27                     | 2200<br>531<br>531<br>531<br>0.2<br>7 in T<br>20.<br>20.<br>9a)<br>0.2                                 | .95       158.78         .67       482.35         , Th1 (°C)       ug         ug       Sep         36       0.61         Table 9c)       99         99       20.93         9, Th2 (°C)         12       20.12         28       0.54         to 7 in Tab | 99.3<br>445.7<br>0.83<br>20.67<br>20.12                                        | 52.5<br>5 424.42<br>t Nov<br>0.93<br>7 20.21<br>2 20.12<br>0.92                               | 425.96<br>Dec<br>0.95<br>19.93<br>20.11                  | ]<br><br>]<br>]<br>]                      | (84)<br>(85)<br>(86)<br>(87)<br>(88)                                                                         |
| (83)m=<br>Total gr<br>(84)m=<br>7. Mea<br>Tempo<br>Utilisa<br>(86)m=<br>Mean<br>(87)m=<br>Tempo<br>(88)m=<br>Utilisa<br>(89)m=<br>Mean                 | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>Jan<br>0.95<br>interna<br>19.89<br>erature<br>20.1<br>tion fac<br>0.94<br>interna   | 81.51         nternal a         479.61         nal temp         during h         ctor for ga         Feb         0.93         I tempera         20.06         during h         20.11         ctor for ga         0.92         I tempera | 131.35<br>nd solar<br>514.73<br>erature<br>eating p<br>ains for l<br>Mar<br>0.89<br>ature in<br>20.35<br>eating p<br>20.11<br>ains for r<br>0.87<br>ature in | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12<br>rest of d<br>0.78<br>the rest          | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,n<br>May<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12<br>welling,<br>0.61<br>of dwel   | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f dw<br>12<br>f dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>w ste<br>20.97<br>velling<br>20.12<br>,m (se<br>0.43<br>T2 (fo           | , watts<br>569.94<br>from Tab<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12<br>te Table<br>0.27                     | 2200<br>531<br>531<br>0.2<br>7 in T<br>200<br>3able 9<br>200<br>9a)<br>0.2<br>eps 3                    | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)<br>12 20.12<br>28 0.54<br>to 7 in Tab<br>12 20.06                                                                                                   | 99.3<br>445.7<br>0.67<br>20.67<br>20.12<br>20.12<br>0.79<br>le 9c)<br>19.75    | 52.5<br>5 424.42<br>t Nov<br>0.93<br>7 20.21<br>2 20.12<br>0.92                               | 425.96<br>Dec<br>0.95<br>19.93<br>20.11<br>0.94<br>18.71 | 21<br>21<br>]<br>]<br>]<br>]<br>]<br>0.49 | (84)<br>(85)<br>(86)<br>(87)<br>(88)<br>(88)<br>(89)                                                         |
| (83)m=<br>Total g:<br>(84)m=<br>7. Mea<br>Tempo<br>Utilisa<br>(86)m=<br>(86)m=<br>(87)m=<br>(87)m=<br>Utilisa<br>(89)m=<br>Utilisa<br>(89)m=<br>(90)m= | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>0.95<br>interna<br>19.89<br>erature<br>20.1<br>tion fac<br>0.94<br>interna<br>18.65 | 81.51nternal a479.61nal tempduring hctor for gaFeb0.93It tempera20.06during h20.11ctor for ga0.92It tempera18.89                                                                                                                        | 131.35nd solar514.73eratureeating pains for lMar0.89ature in20.35eating p20.11ains for l0.87ature in 119.29                                                  | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12<br>rest of d<br>0.78<br>the rest<br>19.69 | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,r<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12<br>welling,<br>0.61<br>of dwel<br>19.98 | 2<br>+ ((i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f f<br>f dw<br>2<br>f f<br>f f<br>f f<br>f f<br>f f<br>f f<br>f f<br>f f<br>f f<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97<br>(elling<br>20.12<br>,m (se<br>0.43<br>T2 (fo<br>20.09 | , watts<br>569.94<br>from Tak<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12<br>e Table<br>0.27<br>blow ste<br>20.12 | 2200<br>531<br>531<br>531<br>0.2<br>7 in T<br>20.<br>3able §<br>20.<br>9a)<br>0.2<br>20.<br>9a)<br>0.2 | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)<br>12 20.12<br>28 0.54<br>to 7 in Tab<br>12 20.06                                                                                                   | 99.3<br>445.7<br>0.83<br>20.67<br>20.12<br>0.79<br>le 9c)<br>19.75<br>fLA = Li | 52.5<br>5424.42<br>1 Nov<br>0.93<br>7 20.21<br>2 20.12<br>9 0.92<br>5 19.12                   | 425.96<br>Dec<br>0.95<br>19.93<br>20.11<br>0.94<br>18.71 | <br> <br> <br> <br>                       | <ul> <li>(84)</li> <li>(85)</li> <li>(86)</li> <li>(87)</li> <li>(88)</li> <li>(89)</li> <li>(90)</li> </ul> |
| (83)m=<br>Total g:<br>(84)m=<br>7. Mea<br>Tempo<br>Utilisa<br>(86)m=<br>(86)m=<br>(87)m=<br>(87)m=<br>Utilisa<br>(89)m=<br>Utilisa<br>(89)m=<br>(90)m= | 42.36<br>ains – i<br>443.61<br>an inter<br>erature<br>tion fac<br>0.95<br>interna<br>19.89<br>erature<br>20.1<br>tion fac<br>0.94<br>interna<br>18.65 | 81.51nternal a479.61nal tempduring hctor for gaFeb0.93It tempera20.06during h20.11ctor for ga0.92It tempera18.89                                                                                                                        | 131.35nd solar514.73eratureeating pains for lMar0.89ature in20.35eating p20.11ains for l0.87ature in 119.29                                                  | 202.19<br>(84)m =<br>562.87<br>(heating<br>eriods ir<br>iving are<br>Apr<br>0.81<br>living are<br>20.63<br>eriods ir<br>20.12<br>rest of d<br>0.78<br>the rest<br>19.69 | 258.11<br>= (73)m<br>595.84<br>season<br>the liv<br>ea, h1,r<br>0.66<br>ea T1 (f<br>20.87<br>n rest of<br>20.12<br>welling,<br>0.61<br>of dwel<br>19.98 | 2<br>+ (i<br>5<br>n)<br>ing<br>n (s<br>follo<br>2<br>f dw<br>2<br>f dw<br>2<br>f dw<br>2<br>2<br>f dw<br>2<br>2<br>f dw<br>2<br>2<br>f dw<br>2<br>2<br>f dw<br>2<br>2<br>f dw<br>2<br>f dw<br>1<br>f dw<br>2<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1<br>f dw<br>1 | 83)m<br>93.96<br>area f<br>ee Ta<br>Jun<br>0.49<br>ww ste<br>20.97<br>(elling<br>20.12<br>,m (se<br>0.43<br>T2 (fo<br>20.09 | , watts<br>569.94<br>from Tak<br>ble 9a)<br>Jul<br>0.34<br>ps 3 to 7<br>20.99<br>from Ta<br>20.12<br>e Table<br>0.27<br>blow ste<br>20.12 | 2200<br>531<br>531<br>531<br>0.2<br>7 in T<br>20.<br>3able §<br>20.<br>9a)<br>0.2<br>20.<br>9a)<br>0.2 | .95 158.78<br>.67 482.35<br>, Th1 (°C)<br>ug Sep<br>36 0.61<br>Table 9c)<br>99 20.93<br>9, Th2 (°C)<br>12 20.12<br>28 0.54<br>to 7 in Tab<br>12 20.06<br>- fLA) × T2                                                                                    | 99.3<br>445.7<br>0.83<br>20.67<br>20.12<br>0.79<br>le 9c)<br>19.75<br>fLA = Li | 52.5<br>5424.42<br>1 Nov<br>0.93<br>7 20.21<br>2 20.12<br>2 20.12<br>5 19.12<br>ving area ÷ ( | 425.96<br>Dec<br>0.95<br>19.93<br>20.11<br>0.94<br>18.71 | <br> <br> <br> <br>                       | <ul> <li>(84)</li> <li>(85)</li> <li>(86)</li> <li>(87)</li> <li>(88)</li> <li>(89)</li> <li>(90)</li> </ul> |

| Apply    | adjustn    | nent to t      | he mear   | n interna | I tempera         | ature fro | m Table   | e 4e, whe   | ere appro  | opriate               |                         |            |           |       |
|----------|------------|----------------|-----------|-----------|-------------------|-----------|-----------|-------------|------------|-----------------------|-------------------------|------------|-----------|-------|
| (93)m=   | 19.11      | 19.31          | 19.66     | 20        | 20.27             | 20.37     | 20.39     | 20.39       | 20.33      | 20.05                 | 19.5                    | 19.15      |           | (93)  |
| 8. Spa   | ace hea    | ting requ      | uirement  | t         |                   |           |           |             |            |                       |                         |            |           |       |
| Set Ti   | i to the r | mean int       | ernal tei | mperatu   | re obtain         | ed at ste | ep 11 of  | Table 9t    | o, so tha  | t Ti,m=(              | 76)m an                 | d re-calc  | ulate     |       |
| the ut   | ilisation  | factor fo      | or gains  | using Ta  | able 9a           |           |           |             |            |                       |                         |            |           |       |
|          | Jan        | Feb            | Mar       | Apr       | May               | Jun       | Jul       | Aug         | Sep        | Oct                   | Nov                     | Dec        |           |       |
| Utilisa  | ation fac  | tor for g      | ains, hm  | 1:        |                   |           |           |             |            |                       |                         |            |           |       |
| (94)m=   | 0.93       | 0.91           | 0.86      | 0.77      | 0.62              | 0.45      | 0.29      | 0.31        | 0.56       | 0.79                  | 0.9                     | 0.93       |           | (94)  |
| Usefu    | I gains,   | hmGm           | , W = (94 | 4)m x (8  | 4)m               |           |           |             |            |                       |                         |            |           |       |
| (95)m=   | 412.95     | 435.91         | 442.47    | 435.91    | 370.86            | 265.27    | 164.08    | 163.77      | 268.8      | 351.22                | 383.71                  | 397.34     |           | (95)  |
| Month    | nly aver   | age exte       | rnal tem  | perature  | e from Ta         | able 8    |           |             |            |                       |                         |            |           |       |
| (96)m=   | 4.5        | 5              | 6.8       | 8.7       | 11.7              | 14.6      | 16.9      | 16.9        | 14.3       | 10.8                  | 7                       | 4.9        |           | (96)  |
| Heat     | loss rate  | e for mea      | an interr | al temp   | erature,          | Lm , W =  | =[(39)m : | x [(93)m    | – (96)m    | ]                     |                         |            |           |       |
| (97)m=   | 710.29     | 687.36         | 617.29    | 533.41    | 404.38            | 272.42    | 165       | 164.94      | 284.88     | 436.47                | 592.59                  | 684.35     |           | (97)  |
| Space    | e heatin   | g require      | ement fo  | r each n  | nonth, k          | Nh/mont   | th = 0.02 | 24 x [(97)  | )m – (95   | )m] x (4 <sup>-</sup> | 1)m                     |            |           |       |
| (98)m=   | 221.22     | 168.98         | 130.07    | 70.2      | 24.94             | 0         | 0         | 0           | 0          | 63.43                 | 150.39                  | 213.53     |           |       |
|          |            |                |           |           |                   |           |           | Tota        | l per year | (kWh/year             | ·) = Sum(9              | 8)15,912 = | 1042.76   | (98)  |
| Snace    | heatin     | g require      | ement in  | k\//h/m   | 2/vear            |           |           |             |            |                       |                         |            | 21.16     | (99)  |
| •        |            | • •            |           |           |                   |           |           |             |            |                       |                         |            | 21.10     |       |
|          |            |                | nts – Ind | ividual h | eating sy         | ystems i  | ncluding  | micro-C     | CHP)       |                       |                         |            |           |       |
| -        | e heatir   | -              | + frame a |           |                   |           |           |             |            |                       |                         |            | -         |       |
|          | -          |                |           |           | y/supple          | mentary   | -         |             |            |                       |                         |            | 0         | (201) |
| Fracti   | on of sp   | ace hea        | at from m | nain syst | tem(s)            |           |           | (202) = 1 - | - (201) =  |                       |                         |            | 1         | (202) |
| Fracti   | on of to   | tal heati      | ng from   | main sy   | stem 1            |           |           | (204) = (20 | 02) × [1 – | (203)] =              |                         |            | 1         | (204) |
| Efficie  | ency of r  | main spa       | ace heat  | ing syste | em 1              |           |           |             |            |                       |                         |            | 93        | (206) |
| Efficie  | ency of s  | seconda        | ry/suppl  | ementar   | y heating         | a system  | n, %      |             |            |                       |                         | ·          | 0         | (208) |
| 1        | -          | r              | Mar       | i         | 1                 |           |           | A           | San        | Oct                   | Nov                     | Dee        | L\\/b/uo/ |       |
| Space    | Jan        | Feb            |           | Apr       | May               | Jun       | Jul       | Aug         | Sep        | Oct                   | Nov                     | Dec        | kWh/yea   | 11    |
| Space    | 221.22     | 168.98         | 130.07    | 70.2      | d above)<br>24.94 | 0         | 0         | 0           | 0          | 63.43                 | 150.39                  | 213.53     |           |       |
|          |            |                |           |           |                   | 0         | 0         | 0           | 0          | 03.43                 | 150.55                  | 215.55     |           |       |
| (211)m   |            | )m x (20       | , <u></u> | <u>``</u> | ŕ                 |           |           |             |            |                       |                         |            |           | (211) |
|          | 237.87     | 181.7          | 139.86    | 75.48     | 26.82             | 0         | 0         | 0           | 0          | 68.2                  | 161.71                  | 229.61     |           | -     |
|          |            |                |           |           |                   |           |           | Tota        | I (kWh/yea | ar) =Sum(2            | 211) <sub>15,1012</sub> | =          | 1121.24   | (211) |
| •        |            | g fuel (s      |           | • •       | 'month            |           |           |             |            |                       |                         |            |           |       |
| 1        |            | 01)] } x ^     | 100 ÷ (20 | 08)       |                   |           |           |             |            |                       |                         |            |           |       |
| (215)m=  | 0          | 0              | 0         | 0         | 0                 | 0         | 0         | 0           | 0          | 0                     | 0                       | 0          |           | _     |
|          |            |                |           |           |                   |           |           | Tota        | I (kWh/yea | ar) =Sum(2            | 215) <sub>15,1012</sub> | =          | 0         | (215) |
| Water    | heating    | J              |           |           |                   |           |           |             |            |                       |                         |            |           |       |
| Output   |            | ater hea       |           |           |                   |           |           |             |            |                       |                         |            |           |       |
|          | 142.43     | 125.16         | 130.59    | 115.87    | 112.69            | 99.46     | 94.36     | 105.15      | 105.48     | 120.22                | 128.62                  | 138.6      |           | _     |
| Efficier | ncy of w   | ater hea       | ter       | -         | -                 |           |           |             |            |                       |                         |            | 86.7      | (216) |
| (217)m=  | 88.68      | 88.57          | 88.32     | 87.92     | 87.28             | 86.7      | 86.7      | 86.7        | 86.7       | 87.81                 | 88.45                   | 88.67      |           | (217) |
|          |            | heating,       |           |           |                   |           |           |             |            |                       |                         |            |           |       |
| . ,      |            | <u>m x 100</u> |           |           |                   |           |           |             |            |                       |                         |            | 1         |       |
| (219)m=  | 160.61     | 141.32         | 147.86    | 131.8     | 129.11            | 114.72    | 108.83    | 121.28      | 121.66     | 136.91                | 145.42                  | 156.31     |           | -     |
|          |            |                |           |           |                   |           |           | Tota        | I = Sum(21 | 19a) <sub>112</sub> = |                         |            | 1615.83   | (219) |

| Annual totals<br>Space heating fuel used, main system 1                  |                                   | kWh/yea                                     | ar                      | <b>kWh/year</b><br>1121.24 | 7      |
|--------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|-------------------------|----------------------------|--------|
| Water heating fuel used                                                  |                                   |                                             |                         | 1615.83                    | ī      |
| Electricity for pumps, fans and electric keep                            | p-hot                             |                                             |                         |                            | _      |
| mechanical ventilation - balanced, extract                               | or positive input from o          | utside                                      | 34.49                   |                            | (230a) |
| central heating pump:                                                    |                                   |                                             | 130                     |                            | (230c) |
| boiler with a fan-assisted flue                                          |                                   |                                             | 45                      |                            | (230e) |
| Total electricity for the above, kWh/year                                |                                   | sum of (230a)(230g) =                       |                         | 209.49                     | (231)  |
| Electricity for lighting                                                 |                                   |                                             |                         | 232.99                     | (232)  |
| 10a. Fuel costs - individual heating systen                              | าร:                               |                                             |                         |                            | _      |
|                                                                          | <b>Fuel</b><br>kWh/year           | Fuel Price<br>(Table 12)                    |                         | <b>Fuel Cost</b><br>£/year |        |
| Space heating - main system 1                                            | (211) x                           | 3.1                                         | x 0.01 =                | 34.7586                    | (240)  |
| Space heating - main system 2                                            | (213) x                           | 0                                           | x 0.01 =                | 0                          | (241)  |
| Space heating - secondary                                                | (215) x                           | 0                                           | x 0.01 =                | 0                          | (242)  |
| Water heating cost (other fuel)                                          | (219)                             | 3.1                                         | x 0.01 =                | 50.09                      | (247)  |
| Pumps, fans and electric keep-hot                                        | (231)                             | 11.46                                       | x 0.01 =                | 24.01                      | (249)  |
| (if off-peak tariff, list each of (230a) to (230g<br>Energy for lighting | g) separately as applica<br>(232) | ble and apply fuel price acconnection 11.46 | ording to T<br>x 0.01 = | Table 12a<br>26.7          | (250)  |
| Additional standing charges (Table 12)                                   |                                   |                                             |                         | 106                        | (251)  |
| Appendix Q items: repeat lines (253) and (2                              | 254) as needed                    |                                             |                         |                            |        |
|                                                                          | 45)(247) + (250)(254) =           |                                             |                         | 241.5573                   | (255)  |
| 11a. SAP rating - individual heating system                              | ns                                |                                             |                         |                            |        |
| Energy cost deflator (Table 12)                                          |                                   |                                             |                         | 0.47                       | (256)  |
| Energy cost factor (ECF) [(2                                             | 55) x (256)] ÷ [(4) + 45.0] =     |                                             |                         | 1.2042                     | (257)  |
| SAP rating (Section 12)                                                  |                                   |                                             |                         | 83.2014                    | (258)  |
| 12a. CO2 emissions – Individual heating s                                | systems including micro           | -CHP                                        |                         |                            |        |
|                                                                          | <b>Energy</b><br>kWh/year         | <b>Emission fa</b><br>kg CO2/kWh            |                         | Emissions<br>kg CO2/yea    |        |
| Space heating (main system 1)                                            | (211) x                           | 0.198                                       | =                       | 222.01                     | (261)  |
| Space heating (secondary)                                                | (215) x                           | 0                                           | =                       | 0                          | (263)  |
| Water heating                                                            | (219) x                           | 0.198                                       | =                       | 319.94                     | (264)  |
| Space and water heating                                                  | (261) + (262) + (2                | 63) + (264) =                               |                         | 541.94                     | (265)  |
| Electricity for pumps, fans and electric keep                            | o-hot (231) x                     | 0.517                                       | =                       | 108.31                     | (267)  |
| Electricity for lighting                                                 | (232) x                           | 0.517                                       | =                       | 120.45                     | (268)  |
| Total CO2, kg/year                                                       |                                   | sum of (265)(271) =                         |                         | 770.7                      | (272)  |

| CO2 emissions per m <sup>2</sup>                  | (272) ÷ (4) =                   |                   |   | 15.64                        | (273) |
|---------------------------------------------------|---------------------------------|-------------------|---|------------------------------|-------|
| EI rating (section 14)                            |                                 |                   |   | 89                           | (274) |
| 13a. Primary Energy                               |                                 |                   |   |                              |       |
|                                                   | <b>Energy</b><br>kWh/year       | Primary<br>factor |   | <b>P. Energy</b><br>kWh/year |       |
| Space heating (main system 1)                     | (211) x                         | 1.02              | = | 1143.67                      | (261) |
| Space heating (secondary)                         | (215) x                         | 0                 | = | 0                            | (263) |
| Energy for water heating                          | (219) x                         | 1.02              | = | 1648.15                      | (264) |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                   |   | 2791.82                      | (265) |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 2.92              | = | 611.71                       | (267) |
| Electricity for lighting                          | (232) x                         | 0                 | = | 680.32                       | (268) |
| 'Total Primary Energy                             | sum                             | of (265)(271) =   |   | 4083.85                      | (272) |
| Primary energy kWh/m²/year                        | (272                            | ) ÷ (4) =         |   | 82.87                        | (273) |

## **Predicted Energy Assessment**


Plot 98 (Block 21) Beaulieu Zone Q Chelmsford Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 30 March 2022 Matthew Stainrod 49.28 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.



## **Code for Sustainable Homes Report**

| Assessor and House                  | Details                                                                 |                                  |                  |
|-------------------------------------|-------------------------------------------------------------------------|----------------------------------|------------------|
| Assessor Name:<br>Property Address: | Matthew Stainrod<br>Plot 98 (Block 21)<br>Beaulieu Zone Q<br>Chelmsford | Assessor Number:                 | STRO023501       |
| Buiding regulation as               | sessment                                                                |                                  |                  |
|                                     |                                                                         |                                  | kg/m²/year       |
| TER                                 |                                                                         |                                  | 18.19            |
| DER                                 |                                                                         |                                  | 17.14            |
| The following code calcu            | lations are taken from the Cod                                          | e for Sustainable Homes Technica | l Guide (Nov 10) |
| Ene 1 Assessment - D                | welling Emission Rate                                                   |                                  |                  |

### Total Energy Type CO2 Emissions for Codes Levels 1 - 5

|                                                                      | % | kg/m²/year |       |
|----------------------------------------------------------------------|---|------------|-------|
| DER from SAP 2009 DER Worksheet                                      |   | 17.14      | (ZC1) |
| TER                                                                  |   | 18.19      |       |
| Residual CO2 emissions offset from biofuel CHP                       |   | 0          | (ZC5) |
| CO2 emissions offset from additional allowable electricty generation |   | 0          | (ZC7) |
| Total CO2 emissions offset from SAP Section 16 allowances            |   | 3.23       |       |
| DER accounting for SAP Section 16 allowances                         |   | 17.14      |       |
| % improvement DER/TER                                                | 0 |            |       |

### **Total Energy Type CO2 Emissions for Codes Levels 6**

|                                               | kg/m²/year |       |
|-----------------------------------------------|------------|-------|
| DER accounting for SAP Section 16 allowances  | 17.14      | (ZC1) |
| CO2 emissions from appliances, equation (L14) | 17.41      | (ZC2) |
| CO2 emissions from cooking, equation (L16)    | 3.23       | (ZC3) |
| Net CO2 emissions                             | 37.8       | (ZC8) |

### Result:

### Credits awarded for Ene 1 = NaN

#### Code Level = 0

### Ene 2 - Fabric energy Efficiency

### Fabric energy Efficiency: 39.05

### Credits awarded for Ene 2 = 7

Ene 7 - Low or Zero Carbon (LZC) Technologies

### **Reduction in CO2 Emissions**

|                             | % | kg/m²/year |  |
|-----------------------------|---|------------|--|
| Standard Case CO2 emissions |   | 40.93      |  |
| Standard DER                |   | 20.29      |  |
| Actual Case CO2 emissions   |   | 40.93      |  |
| Actual DER                  |   | 20.29      |  |
| Reduction in CO2 emissions  | 0 |            |  |

#### Reduction in CO2 emissions

#### Credits awarded for Ene 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

· All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPOA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.