Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.23 Printed on 26 February 2020 at 15:56:22

Project Information:

Assessed By: Matthew Stainrod (STRO023501) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 51.04m²

Plot Reference: Site Reference : Tye Green

08-19-79354 Plot 148 - Type D

Plot 148 - Type D, Tye Green Address:

Client Details:

Name: Countryside Properties

Address: Countryside House, The Drive, Brentwood, CM13 3AT

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

20.23 kg/m² Target Carbon Dioxide Emission Rate (TER)

Dwelling Carbon Dioxide Emission Rate (DER) 18.05 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 50.2 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 42.4 kWh/m²

OK

2 Fabric U-values

Element Average Highest External wall 0.22 (max. 0.30) 0.24 (max. 0.70) OK Party wall 0.00 (max. 0.20) **OK** Floor 0.15 (max. 0.25) OK 0.15 (max. 0.70) Roof (no roof) **Openings** 1.16 (max. 2.00) OK 1.20 (max. 3.30)

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

Air permeability at 50 pascals 5.00 (design value)

Maximum **OK** 10.0

4 Heating efficiency

Database: (rev 455, product index 018203): Main Heating system:

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Potterton

Model: Assure

Model qualifier: 25 Combi

(Combi)

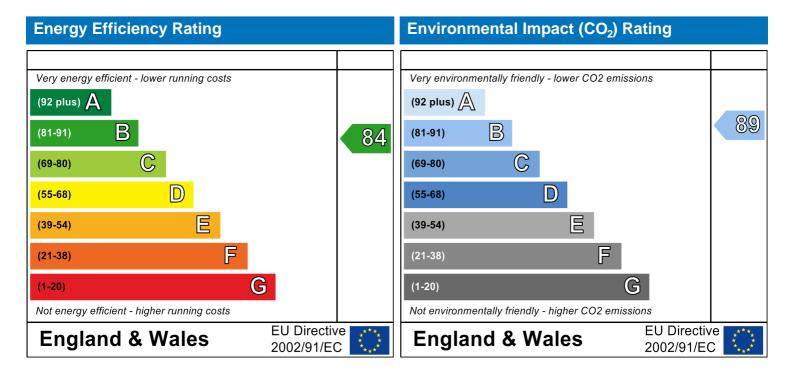
Efficiency 89.0 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	TTZC by plumbing and e	lectrical services	OK
Hot water controls:	No cylinder thermostat No cylinder		
Boiler interlock:	Yes		ок
7 Low energy lights			
Percentage of fixed lights w	ith low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Continuous extract system (decentralised)		
Specific fan power:		0.19 0.18	-11
Maximum		0.7	OK
9 Summertime temperature		• • • •	014
Overheating risk (East Angli Based on:	a):	Medium	OK
Overshading:		Average or unknown	
Windows facing: South		4.05m ²	
Windows facing: East		4.17m²	
Ventilation rate:		2.00	
Blinds/curtains:		Dark-coloured curtain or roller by	olind
		Closed 100% of daylight hours	
10 Key features			
Doors U-value		1 W/m²K	
Party Walls U-value		0 W/m²K	


Predicted Energy Assessment

Plot 148 - Type D Tye Green Dwelling type: Date of assessment: Produced by: Total floor area: Ground floor Flat 20 February 2020 Matthew Stainrod 51.04 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 08-19-79354 Plot 148 - Type D

Address: Plot 148 - Type D, Tye Green

Located in: England Region: East Anglia

UPRN:

Date of assessment: 20 February 2020 Date of certificate: 26 February 2020

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

Water use <= 125 litres/person/day:

New dwelling
Unknown

No related party
Calculated 205.91

True

PCDF Version: 455

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2020

Floor Location: Floor area:

Storey height:

Basement floor 51.04 m² 2.39 m

Living area: 25.34 m² (fraction 0.496)

Front of dwelling faces: West

Opening types:

Name: Source: Type: Glazing: Argon: Frame: Solid Front Manufacturer Wood Front Manufacturer Windows low-E, En = 0.05, soft coat Yes PVC-U Side Manufacturer Windows low-E, En = 0.05, soft coat Yes PVC-U

Name:	Gap:	Frame Fa	ctor: g-value:	U-value:	Area:	No. of Openings:
Front	mm	0.7	0	1	2.08	1
Front	16mm or more	0.7	0.63	1.2	4.05	1
Side	16mm or more	0.7	0.63	1 2	4 17	1

Orient: Width: Height: Name: Type-Name: Location: Communal Wall West Front Front External Wall South 0 0 Side External Wall East 0

Overshading: Average or unknown

Opaque Elements:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>'S</u>						
External Wall	39.89	8.22	31.67	0.21	0	False	60
Communal Wall	16.71	2.08	14.63	0.27	0.43	False	60
Ground Floor	51.04			0.15			75
Internal Element	S						
Timber	86.04						9
Party Elements							
Wall	14.53						110
Ceiling	51.04						30

Thermal bridges:

SAP Input

Intermediate floor between dwellings (in blocks of flats)

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.053

	Length	Psi-value		
[Approved]	6.13	0.3	E2	Other lintels (including other steel lintels)
	2.39	0.022	E3	Sill
	18.78	0.02	E4	Jamb
	23.68	0.064	E5	Ground floor (normal)
	23.68	0.04	E7	Party floor between dwellings (in blocks of flats)
	16.73	0.048	E16	Corner (normal)
	9.56	-0.094	E17	Corner (inverted internal area greater than external area)
	2.39	0.04	E18	Party wall between dwellings
	6.08	0.16	P1	Ground floor

Р3

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Decentralised whole house extract

Number of fans in Wetroom: Kitchen 1 Other 1

Ductwork: ,

6.08

Approved Installation Scheme: False

0

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 455, product index 018203) Efficiency: Winter 86.7 % Summer: 89.9

Brand name: Potterton

Model: Assure

Model qualifier: 25 Combi

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature >45°C

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown

Stroma FSAP 2012 Version: 1.0.4.23 (SAP 9.92) - http://www.stroma.com

SAP Input

Conservatory: No conservatory

Low energy lights: 100%

Low rise urban / suburban

Terrain type: EPC language: English Wind turbine: No None Photovoltaics: No Assess Zero Carbon Home:

User Details: **Assessor Name:** Matthew Stainrod Stroma Number: STRO023501 Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.4.23 Property Address: 08-19-79354 Plot 148 - Type D Plot 148 - Type D, Tye Green Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) **Basement** (1a) x 2.39 (2a) = 121.99 (3a) 51.04 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)51.04 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =121.99 (5) total m³ per hour main secondary other heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 0 0 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 (13)O Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor (21)0.21 Infiltration rate modified for monthly wind speed Jan Feb Sep Mar Apr Mav Jun Jul Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7

1.1

1.08

0.95

0.95

0.92

1

1.08

1.12

1.18

1.23

Wind Factor $(22a)m = (22)m \div 4$

1.25

1.27

(22a)m

Adjusted infiltration rate (allowing for shelter	and wind speed)	= (21a) x (22a)r	n				
0.27 0.27 0.26 0.23 0.23	0.2 0.2	0.2 0.21		0.24	0.25		
Calculate effective air change rate for the ap	olicable case						_
If mechanical ventilation:	10a) Fan /a aatia	· (NIT)) athermies (C	(25) (22-)			0.5	(23a)
If exhaust air heat pump using Appendix N, (23b) = (2	, , ,	, ,,,	(30) = (23a)			0.5	(23b)
If balanced with heat recovery: efficiency in % allowin			(001)	01.) F.	, (00)	0	(23c)
a) If balanced mechanical ventilation with h	 	- 	` 	, -	``	÷ 100] I	(240)
(24a)m= 0 0 0 0 0	0 0	0 0	0	0	0		(24a)
b) If balanced mechanical ventilation witho	 	`` 	` 			1	(24b)
(24b)m= 0 0 0 0 0	0 0	0 0	0	0	0		(24b)
c) If whole house extract ventilation or positif $(22b)m < 0.5 \times (23b)$, then $(24c) = (2b)m < 0.5 \times (23b)$	•						
(24c)m = 0.52 0.52 0.51 0.5 0.5	0.5 0.5	0.5 0.5	0.5 x (230)	0.5	0.5		(24c)
d) If natural ventilation or whole house pos			0.0	0.0	0.0		(= : -)
if (22b)m = 1, then (24d)m = (22b)m of			x 0.5]				
(24d)m= 0 0 0 0 0	0 0	0 0	0	0	0		(24d)
Effective air change rate - enter (24a) or (2	4b) or (24c) or (2	24d) in box (25)					
(25)m= 0.52 0.52 0.51 0.5 0.5	0.5 0.5	0.5 0.5	0.5	0.5	0.5		(25)
2 Heat larges and heat loss parameter:							
3. Heat losses and heat loss parameter: ELEMENT Gross Openings	Net Area	U-value	AXU		k-value	e AX	' k
area (m²) m²	A ,m ²	W/m2K	(W/K))	kJ/m ² ·l		
Doors	2.08	x 1 :	2.08				(26)
Windows Type 1	4.05	x1/[1/(1.2)+ 0.04] :	4.64	Ī			(27)
Windows Type 2	4.17	x1/[1/(1.2)+ 0.04] :	4.77	Ī			(27)
Floor	51.04	x 0.15 :	7.656001	i r	75	3828	(28)
Walls Type1 39.89 8.22	31.67	x 0.21 :	= 6.65	i i	60	1900.2] (29)
Walls Type2 16.71 2.08	14.63	x 0.24 :	3.54	i i	60	877.8](29)
Total area of elements, m ²	107.64						(31)
Party wall		x 0 :	= 0	¬ г	110	1598.3	(32)
Party ceiling	51.04	~		_	30	1531.2](32b)
Internal wall **				L		╡	(32c)
* for windows and roof windows, use effective window U	-value calculated us	ina formula 1/[(1/Ll-v	alue)+0 041 as	aiven in	naragraph	774.36	(320)
** include the areas on both sides of internal walls and p		ing formula 1/1(1/0 v	aiao) 10.04j ao	givoiriii	paragrapi	0.2	
Fabric heat loss, W/K = S (A x U)		(26)(30) + (32)	=			29.34	(33)
Heat capacity $Cm = S(A \times k)$		((28	3)(30) + (32)	+ (32a).	(32e) =	10509.86	(34)
Thermal mass parameter (TMP = Cm ÷ TFA)	in kJ/m²K	= (3	34) ÷ (4) =			205.91	(35)
For design assessments where the details of the construction can be used instead of a detailed calculation.	ıction are not known	precisely the indicat	tive values of T	MP in Ta	able 1f		_
Thermal bridges: S (L x Y) calculated using	Appendix K					5.7	(36)
if details of thermal bridging are not known (36) = $0.05 x$	(31)						_
Total fabric heat loss		(33) + (36) =			35.04	(37)
Ventilation heat loss calculated monthly)m = 0.33 × (25	5)m x (5)		l	
Jan Feb Mar Apr Ma	y Jun Jul	Aug Se	p Oct	Nov	Dec		

(38)m= 20.	97 20.76	20.54	20.13	20.13	20.13	20.13	20.13	20.13	20.13	20.13	20.13		(38)
Heat transf	er coefficie	nt, W/K						(39)m	= (37) + (37)	38)m			
(39)m= 56.	01 55.8	55.58	55.17	55.17	55.17	55.17	55.17	55.17	55.17	55.17	55.17		
Heat loss p	arameter (HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	55.33	(39)
(40)m= 1.	1 1.09	1.09	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08		
Number of	davs in mo	nth (Tab	le 1a)		!	ļ.	ļ.	,	Average =	Sum(40) ₁	12 /12=	1.08	(40)
Ja	-i	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 3°	- 	31	30	31	30	31	31	30	31	30	31		(41)
. ,		<u> </u>		<u> </u>									
4. Water h	neating ene	rgy requ	irement:								kWh/ye	ear:	
A		N.I.										ı	
	ccupancy, 13.9, N = 1 13.9, N = 1		([1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		72		(42)
Annual ave	,	ater usa	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		75	5.07		(43)
Reduce the a	-		• .		-	-	to achieve	a water us	se target o				` ,
not more that	125 litres per	person pe	r day (all w T	rater use, i	not and co	ia) •			.			İ	
Ja		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usa	ge in litres pe	r day for ea	acn montn T	Va,m = fa 	ctor from	i able 1c x	(43) T		T			Ī	
(44)m= 82.	57 79.57	76.57	73.57	70.56	67.56	67.56	70.56	73.57	76.57	79.57	82.57		_
Energy conte	nt of hot water	used - cal	lculated m	onthly $= 4$.	190 x Vd,ı	m x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		900.81	(44)
(45)m= 122	.46 107.1	110.52	96.35	92.45	79.78	73.93	84.83	85.85	100.05	109.21	118.59		
If the tentence		·					h (40		Total = Su	m(45) ₁₁₂ =	=	1181.11	(45)
If instantaneo		ing at point	t of use (no	not wate	r storage), 1	enter 0 in	boxes (46)) to (61)				1	
(46)m= 18.1 Water stora	I	16.58	14.45	13.87	11.97	11.09	12.72	12.88	15.01	16.38	17.79		(46)
Storage vo	_) includir	ng anv so	olar or W	WHRS	storage	within sa	ame ves	sel		0		(47)
If communi	•	•	•			_					0		(,
Otherwise	•			-			` '	ers) ente	er '0' in (47)			
Water stora	age loss:												
a) If manu	facturer's d	eclared l	oss facto	or is kno	wn (kWl	n/day):					0		(48)
Temperatu	re factor fro	m Table	2b								0		(49)
Energy lost		•	•				(48) x (49)) =			0		(50)
b) If manuf			•								_		(54)
Hot water s If communi	•			ie z (KVV	n/iitre/da	ay)					0		(51)
Volume fac			011 1.0								0		(52)
Temperatu	re factor fro	m Table	2b							—	0		(53)
Energy lost	from wate	r storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
• • • • • • • • • • • • • • • • • • • •	or (54) in (_	,				. , . ,	, , ,	,		0		(55)
Water stora	age loss ca	lculated	for each	month			((56)m = (55) × (41)ı	m			•	
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder con										_		l ix H	* *
(57)m= 0		0	0	0	0	0	0	0	0	0	0		(57)
(0.,,		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>_</u> _	<u> </u>		l	(=-)

Primary circuit loss (annual) from Table 3	0 (58)
Primary circuit loss calculated for each month (59)m = (58) ÷ 365 x (41)m	
(modified by factor from Table H5 if there is solar water heating and a cylinder therm	nostat)
(59)m =	0 0 (59)
Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$	
(61)m= 14.53 13.12 14.52 14.04 14.51 14.04 14.5 14.51 14.04 14.51	14.05 14.52 (61)
Total heat required for water heating calculated for each month (62)m = $0.85 \times (45)$ m -	+ (46)m + (57)m + (59)m + (61)m
(62)m= 136.98 120.22 125.04 110.4 106.96 93.82 88.43 99.34 99.89 114.56	
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contrib	ution to water heating)
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	3,
(63)m= 0 0 0 0 0 0 0 0 0 0	0 0 (63)
Output from water heater	
(64)m= 136.98 120.22 125.04 110.4 106.96 93.82 88.43 99.34 99.89 114.56	3 123.26 133.12
Output from water heat	
Heat gains from water heating, kWh/month 0.25 $\stackrel{\cdot}{}$ [0.85 \times (45)m + (61)m] + 0.8 \times [(46)n	` '
(65)m= 44.35 38.89 40.38 35.55 34.37 30.04 28.21 31.83 32.05 36.89	
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is	1
	Trom community nearing
5. Internal gains (see Table 5 and 5a):	
Metabolic gains (Table 5), Watts	T., T.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	
(66)m= 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25	5 103.25 103.25 (66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
(67)m= 34.82 30.93 25.15 19.04 14.23 12.02 12.98 16.88 22.65 28.76	33.57 35.79 (67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5	
(68)m= 223.78 226.11 220.25 207.8 192.07 177.29 167.42 165.09 170.95 183.4	199.13 213.91 (68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	
(69)m= 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05	47.05 47.05 (69)
Pumps and fans gains (Table 5a)	
(70)m= 3 3 3 3 3 3 3 3 3 3 3	3 3 (70)
Losses e.g. evaporation (negative values) (Table 5)	
(71)m= -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83	3 -68.83 -68.83 (71)
Water heating gains (Table 5)	
(72)m= 59.61 57.87 54.27 49.37 46.19 41.72 37.91 42.79 44.52 49.59	55.31 57.88 (72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m +$	(71)m + (72)m
(73)m= 402.67 399.36 384.13 360.67 336.96 315.48 302.77 309.22 322.58 346.21	1 372.47 392.04 (73)
6. Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applications are calculated using solar flux from Table 6a and associated equations to convert to the applications.	able orientation.
Orientation: Access Factor Area Flux g_	FF Gains
	Table 6c (W)
East 0.9x 0.77 x 4.17 x 19.64 x 0.63 x	0.7 = 25.03 (76)
East 0.9x 0.77 x 4.17 x 38.42 x 0.63 x	0.7 = 48.96 (76)

	_																_
East	0.9x	0.77	X	4.1	7	X	63	3.27	X	0.63		x	0.7	=		80.64	(76)
East	0.9x	0.77	X	4.1	7	X	92	2.28	X	0.63		x	0.7	=		117.6	(76)
East	0.9x	0.77	Х	4.1	7	X	11	3.09	X	0.63		x [0.7	=		144.13	(76)
East	0.9x	0.77	X	4.1	7	X	11	5.77	X	0.63		x	0.7	=		147.54	(76)
East	0.9x	0.77	X	4.1	7	X	11	0.22	X	0.63		x	0.7	=		140.46	(76)
East	0.9x	0.77	X	4.1	7	x	94	4.68	X	0.63		x	0.7			120.66	(76)
East	0.9x	0.77	X	4.1	7	x	73	3.59	X	0.63		x	0.7	=		93.78	(76)
East	0.9x	0.77	X	4.1	7	x	45	5.59	X	0.63		x	0.7	=		58.1	(76)
East	0.9x	0.77	х	4.1	7	x	24	1.49	X	0.63		x	0.7	=		31.21	(76)
East	0.9x	0.77	х	4.1	7	x	16	6.15	X	0.63		x	0.7	=		20.58	(76)
South	0.9x	0.77	X	4.0	15	X	46	6.75	X	0.63		x	0.7			57.87	(78)
South	0.9x	0.77	X	4.0)5	X	76	6.57	X	0.63		x	0.7			94.77	(78)
South	0.9x	0.77	X	4.0)5	x	97	7.53	x	0.63		x	0.7			120.72	(78)
South	0.9x	0.77	X	4.0	15	x	11	0.23	x	0.63		x	0.7			136.44	(78)
South	0.9x	0.77	X	4.0	15	x	11	4.87	x	0.63		x	0.7			142.18	(78)
South	0.9x	0.77	x	4.0	15	X	11	0.55	x	0.63		x [0.7			136.83	(78)
South	0.9x	0.77	X	4.0	15	X	10	8.01	x	0.63		x	0.7			133.69	(78)
South	0.9x	0.77	X	4.0)5	X	10	4.89	X	0.63		x	0.7			129.83	(78)
South	0.9x	0.77	X	4.0)5	X	10	1.89	X	0.63		x	0.7			126.11	(78)
South	0.9x	0.77	X	4.0)5	X	82	2.59	X	0.63		x	0.7	=		102.22	(78)
South	0.9x	0.77	х	4.0	15	X	55	5.42	X	0.63		x	0.7	=		68.59	(78)
South	0.9x	0.77	x	4.0	15	x	4	0.4	x	0.63		x	0.7			50	(78)
Solar g	ains in	watts, ca	lculated	for eac	n mont	h	_		(83)m	= Sum(74)m(8	32)m	_	_	_		
(83)m=	82.9	143.73	201.36	254.04	286.31		84.37	274.15	250	.49 219.	89 1	60.32	99.8	70.59	╛		(83)
Total g	ains – i	nternal aı	nd sola	r (84)m =	= (73)m	+ (83)m ,	watts					_		_		
(84)m=	485.57	543.1	585.49	614.71	623.26	5	99.85	576.92	559).7 542. ₄	47 5	06.53	472.27	462.62	!		(84)
7. Me	an inter	nal temp	erature	(heating	seaso	n)											
Temp	erature	during he	eating p	eriods ir	the liv	ing	area fi	rom Tab	ole 9	Th1 (°C)					21	(85)
Utilisa	tion fac	tor for ga	ins for	living are	ea, h1,ı	n (s	ee Tal	ole 9a)							_		
	Jan	Feb	Mar	Apr	May	<u>, </u>	Jun	Jul	Α	ug Se	p	Oct	Nov	Dec			
(86)m=	0.97	0.96	0.92	0.85	0.73		0.57	0.42	0.4	5 0.6	5 (0.87	0.95	0.98			(86)
Mean	interna	l tempera	ature in	living are	ea T1 (follo	w step	os 3 to 7	in T	able 9c)							
(87)m=	20	20.18	20.42	20.69	20.88	7	20.97	20.99	20.	99 20.9	04 2	20.71	20.31	19.97			(87)
Temp	erature	during he	eating r	eriods ir	rest o	f dw	/ellina	from Ta	ble 9). Th2 (°(C)		•	•			
(88)m=	20	20.01	20.01	20.02	20.02	_	20.02	20.02	20.			20.02	20.02	20.02	7		(88)
l Itilies	tion fac	tor for ga	ine for	ract of d	vollina	h2	m (so	o Tablo	02)		!		1	<u>[</u>	_		
(89)m=	0.97	0.95	0.9	0.82	0.68	\neg	0.49	0.33	0.3	5 0.58	3	0.83	0.94	0.97	٦		(89)
		<u> </u>							<u> </u>				1		_		, ,
Mean (90)m=	18.71	l tempera	19.31	19.67	of dwe 19.9	iiing T	20	20.01	20.			9 C) 19.7	19.17	18.67	7		(90)
(50)111=	10.71	10.90	13.31	19.07	19.5		20	20.01		19.8			ing area ÷ (4	<u> </u>		0.5	(91)
													3 (,			

Maria Catana	. 1. (.11 .1	III \		. /4 (1	A) TO					
Mean interna (92)m= 19.35	19.57	19.86	20.17	20.38	20.48	20.5	+ (1 – IL	20.45	20.2	19.74	19.32		(92)
Apply adjust										19.74	19.52		(32)
(93)m= 19.2	19.42	19.71	20.02	20.23	20.33	20.35	20.35	20.3	20.05	19.59	19.17		(93)
8. Space hea				20.20	20.00	20.00	20.00	20.0	20.00	10.00	10.17		(
Set Ti to the				re obtain	ad at et	en 11 of	Table 0	h so tha	t Ti m-(76)m an	d re-calc	ulata	
the utilisation			•		ieu ai sii	ер птог	i abie 3	b, 50 iiia	it 11,111—(rojili ali	u re-caic	uiaie	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fa	ctor for g	ains, hm	•										
(94)m= 0.96	0.94	0.9	0.82	0.69	0.51	0.36	0.39	0.6	0.83	0.94	0.97		(94)
Useful gains	, hmGm	, W = (94	1)m x (8	4)m							<u> </u>	l	
(95)m= 466.59	509.61	525.39	503.06	429.77	307.61	205.62	215.97	325.23	420.78	441.58	447.23		(95)
Monthly ave	rage exte	rnal tem	perature	from Ta	able 8	•	•	•	•	•		l.	
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rat	e for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m= 834.45	809.99	734.29	613.62	470.81	316.08	206.91	217.84	342.26	521.35	688.8	825.73		(97)
Space heatir	ng require	ement fo	r each n	nonth, k\	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m= 273.69	201.86	155.42	79.6	30.54	0	0	0	0	74.83	178	281.6		
		-			-		Tota	l per year	(kWh/year	r) = Sum(9	8) _{15,912} =	1275.54	(98)
Space heatir	ng require	ement in	kWh/m²	² /year							Ī	24.99	(99)
9a. Energy re	• '				vetome i	ncluding	micro-C	`UD\			L		
Space heati	•	its – iriui	viduai ii	calling s	ysterns i	ricidaling	THICIO-C) IF)					
Fraction of s	•	at from se	econdar	v/supple	mentary	svstem					[0	(201)
Fraction of s					,	•	(202) = 1	- (201) =			[1	(202)
			-	` '				02) × [1 –	(203)] =		l I		╡
Fraction of to		•	-				(204) - (2	02) × [1	(200)] =		<u>[</u>	1	(204)
Efficiency of	-											89.9	(206)
Efficiency of	seconda	ry/supple	ementar	y heating	g systen	า, %		-				0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heatir	ng require	ement (c	alculate	d above))								
273.69	201.86	155.42	79.6	30.54	0	0	0	0	74.83	178	281.6		
(211)m = {[(98	3)m x (20	(4)] } x 1	00 ÷ (20	06)									(211)
304.44	224.54	172.88	88.55	33.97	0	0	0	0	83.23	198	313.24		
	•			•	•	•	Tota	l (kWh/yea	ar) =Sum(2	211),5,1012	F	1418.84	(211)
Space heatir	ng fuel (s	econdar	y), kWh/	month							L		
= {[(98)m x (2	•												
(215)m= 0	0	0	0	0	0	0	0	0	0	0	0		
	•						Tota	ıl (kWh/yea	ar) =Sum(2	215),5,1012	=	0	(215)
Water heatin	g												
Output from v	zater hea	ter (calc	ulated a	bove)								ı	
136.98	120.22	125.04	110.4	106.96	93.82	88.43	99.34	99.89	114.56	123.26	133.12		
	vater hea	ter										86.7	(216)
Efficiency of v													(216)
Efficiency of v (217)m= 88.81	88.68	88.44	88.01	87.39	86.7	86.7	86.7	86.7	87.94	88.56	88.85		(217)
(217)m= 88.81 Fuel for water	88.68 heating,	88.44 kWh/mo	onth	87.39	86.7	86.7	86.7	86.7	87.94	88.56	88.85		
(217)m= 88.81 Fuel for water (219)m = (64	88.68 heating,)m x 100	88.44 kWh/mo) ÷ (217)	onth m		I		I		I	I			
(217)m= 88.81 Fuel for water	88.68 heating,)m x 100	88.44 kWh/mo	onth	87.39	86.7	86.7	114.58	86.7 115.21 al = Sum(2	130.27	88.56 139.18	88.85	1538.28	

Annual totals Space heating fuel used, main system 1		kWh/year	kWh/year
Water heating fuel used			1538.28
Electricity for pumps, fans and electric keep-ho	ot		1000.20
mechanical ventilation - balanced, extract or		36.02	(230a)
central heating pump:	· ·	30	(230c)
boiler with a fan-assisted flue		45	(230e)
Total electricity for the above, kWh/year	sum	of (230a)(230g) =	111.02 (231)
Electricity for lighting			245.96 (232)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 x 0.01 =	49.38 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	53.53 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	14.64 (249)
(if off-peak tariff, list each of (230a) to (230g) s Energy for lighting	separately as applicable ar	nd apply fuel price according to	
Additional standing charges (Table 12)			120 (251)
Appendix Q items: repeat lines (253) and (254 Total energy cost (245)	as needed .(247) + (250)(254) =		269.99 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255)	x (256)] ÷ [(4) + 45.0] =		1.18 (257)
SAP rating (Section 12)			83.53 (258)
12a. CO2 emissions – Individual heating syst	ems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	306.47 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	332.27 (264)
Space and water heating	(261) + (262) + (263) + (2	264) =	638.74 (265)
Electricity for pumps, fans and electric keep-ho	ot (231) x	0.519 =	57.62 (267)
Electricity for lighting	(232) x	0.519 =	127.65 (268)
Total CO2, kg/year		sum of (265)(271) =	824.01 (272)

CO2 emissions per m²

(272) ÷ (4) =

16.14 (273)

(274)

89

El rating (section 14)

13a. Primary Energy

	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	1730.99 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22	1876.7 (264)
Space and water heating	(261) + (262) + (263) + (264) =		3607.68 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	340.84 (267)
Electricity for lighting	(232) x	0 =	755.1 (268)
'Total Primary Energy	sum	of (265)(271) =	4703.62 (272)
Primary energy kWh/m²/year	(272	2) ÷ (4) =	92.16 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 26 February 2020

Property Details: 08-19-79354 Plot 148 - Type D

Dwelling type:FlatLocated in:EnglandRegion:East Anglia

Cross ventilation possible:NoNumber of storeys:1Front of dwelling faces:West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 205.91

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
2 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 80.51 (P1)

Transmission heat loss coefficient: 35

Summer heat loss coefficient: 115.55 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

South (Front) 0 1 East (Side) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South (Front)	0.85	0.9	1	0.76	(P8)
East (Side)	0.85	0.9	1	0.76	(P8)

Solar gains

Orientation		Area	Flux	g _	FF	Shading	Gains
South (Front)	0.9 x	4.05	114.84	0.63	0.7	0.76	141.22
East (Side)	0.9 x	4.17	119.47	0.63	0.7	0.76	151.27
						Total	292 48 (P3/P4)

Internal gains:

	June	July	August
Internal gains	312.48	299.77	306.22
Total summer gains	619.03	592.26	575.08 (P5)
Summer gain/loss ratio	5.36	5.13	4.98 (P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6
Thermal mass temperature increment	0.56	0.56	0.56
Threshold temperature	21.32	23.28	23.14 (P7)
Likelihood of high internal temperature	Slight	Medium	Medium

Assessment of likelihood of high internal temperature: Medium