Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.23 Printed on 26 February 2020 at 15:55:38

Project Information:

Assessed By: Matthew Stainrod (STRO023501) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 51.04m²

Site Reference: Tye Green **Plot Reference:** 08-19-79354 Plot 151 - Type D

Plot 151 - Type D, Tye Green Address:

Client Details:

Name: Countryside Properties

Address: Countryside House, The Drive, Brentwood, CM13 3AT

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

19.7 kg/m² Target Carbon Dioxide Emission Rate (TER)

Dwelling Carbon Dioxide Emission Rate (DER) 17.42 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 46.9 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 39.2 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.22 (max. 0.30)	0.24 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	(no floor)		
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.16 (max. 2.00)	1.20 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

Air permeability at 50 pascals 5.00 (design value)

Maximum **OK** 10.0

4 Heating efficiency

Database: (rev 455, product index 018203): Main Heating system:

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Potterton

Model: Assure

Model qualifier: 25 Combi

(Combi)

Efficiency 89.0 % SEDBUK2009

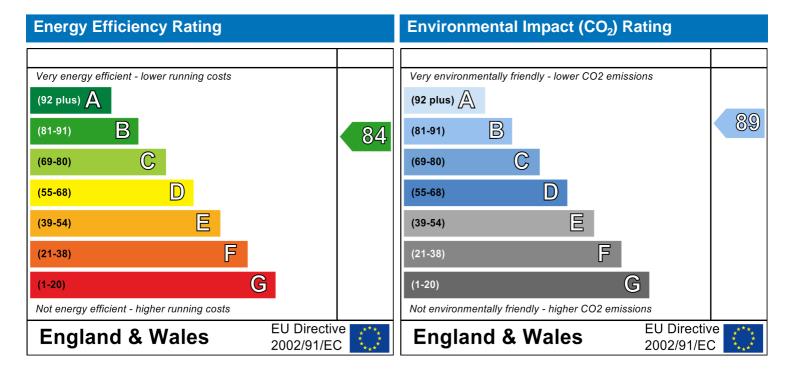
Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	TTZC by plumbing and e	lectrical services	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		OK
Low energy lights			
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Continuous extract system (decentralised)		
Specific fan power:		0.19 0.18	
Maximum		0.7	OK
Summertime temperature			
Overheating risk (East Anglia	a):	Medium	OK
ased on:			
Overshading:		Average or unknown	
Windows facing: South		4.05m²	
Windows facing: East		3.13m²	
Ventilation rate:		2.00	
Blinds/curtains:		Dark-coloured curtain or roller	
		Closed 100% of daylight hours	3
0 Key features			
Doors U-value		1 W/m²K	
		0.11 W/m²K	
Roofs U-value		U.II VV/III-K	

Predicted Energy Assessment



Plot 151 - Type D Tye Green Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Top floor Flat 20 February 2020 Matthew Stainrod 51.04 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Plot 151 - Type D, Tye Green Address:

Located in: England Region: East Anglia

UPRN:

Date of assessment: 20 February 2020 Date of certificate: 26 February 2020

New dwelling design stage Assessment type:

New dwelling Transaction type: Unknown Tenure type: Related party disclosure: No related party Thermal Mass Parameter: Calculated 151.14

True Water use <= 125 litres/person/day:

PCDF Version: 455

Flat Dwelling type:

Detachment:

2020 Year Completed:

Floor Location: Floor area:

Storey height:

2.39 m Basement floor 51.04 m²

25.34 m² (fraction 0.496) Living area:

West Front of dwelling faces:

Name: Source: Type: Glazing: Argon: Frame: Solid Front Manufacturer Wood Front Manufacturer Windows low-E, En = 0.05, soft coat Yes PVC-U Side Manufacturer Windows low-E, En = 0.05, soft coat Yes PVC-U

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Front	mm	0.7	0	1	2.08	1
Front	16mm or more	0.7	0.63	1.2	4.05	1
Side	16mm or more	0.7	0.63	1 2	3 13	1

Orient: Width: Height: Name: Type-Name: Location: Communal Wall West Front Front External Wall South 0 0 Side External Wall East 0

Average or unknown Overshading:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>S</u>						
External Wall	39.89	7.18	32.71	0.21	0	False	60
Communal Wall	16.71	2.08	14.63	0.27	0.43	False	60
Roof - flat ceiling	51.04	0	51.04	0.11	0		9
Internal Element	S						
Timber	86.04						9
Party Elements							
Wall	14.53						110
Floor	51.04						40

SAP Input

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0477

	Length	Psi-value		
[Approved]	6.13	0.3	E2	Other lintels (including other steel lintels)
	3.75	0.022	E3	Sill
	17.28	0.02	E4	Jamb
	23.68	0.04	E7	Party floor between dwellings (in blocks of flats)
[Approved]	8.9	0.06	E10	Eaves (insulation at ceiling level)
	14.78	0.06	E12	Gable (insulation at ceiling level)
	16.73	0.048	E16	Corner (normal)
	9.56	-0.094	E17	Corner (inverted internal area greater than external area)
	2.39	0.04	E18	Party wall between dwellings
	6.08	0	P3	Intermediate floor between dwellings (in blocks of flats)

P4

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Decentralised whole house extract

Number of fans in Wetroom: Kitchen 1 Other 1

Ductwork: ,

6.08

Approved Installation Scheme: False

0.083

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 455, product index 018203) Efficiency: Winter 86.7 % Summer: 89.9

Roof (insulation at ceiling level)

Brand name: Potterton

Model: Assure

Model qualifier: 25 Combi

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature >45°C

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown

SAP Input

Conservatory: No conservatory

Low energy lights: 100%

Low rise urban / suburban

Terrain type: EPC language: English Wind turbine: No None Photovoltaics: No Assess Zero Carbon Home:

User Details: **Assessor Name:** Matthew Stainrod Stroma Number: STRO023501 Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.4.23 Property Address: 08-19-79354 Plot 151 - Type D Plot 151 - Type D, Tye Green Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) **Basement** (1a) x 2.39 (2a) = 121.99 (3a) 51.04 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)51.04 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =121.99 (5) total m³ per hour main secondary other heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 0 0 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 (13)0 Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor (21)0.21 Infiltration rate modified for monthly wind speed Jan Feb Sep Mar Apr Mav Jun Jul Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7

1.1

1.08

0.95

0.95

0.92

1

1.08

1.12

1.18

1.23

Wind Factor $(22a)m = (22)m \div 4$

1.25

1.27

(22a)m

Adjusted infiltration ra	ate (allow	ing for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.27 0.27	0.26	0.23	0.23	0.2	0.2	0.2	0.21	0.23	0.24	0.25		
Calculate effective a	•	rate for t	he appli	cable ca	se		!	!		•		
If mechanical vent		andiv N (2	3h) - (23s	a) × Fmv (e	acuation (N	J5)) othe	rwisa (23h	ı) – (23a)			0.5	(23a)
If balanced with heat re	0 11	, ,	, (,		,, ,	`) = (23a)			0.5	(23b)
a) If balanced med	-	-	_					2h\m + (23h) ~ [1 _ (23c)	· 1001	(23c)
(24a)m= 0 0		0	0	0	0	0	0	0	0	0	÷ 100j	(24a)
b) If balanced med		L										, ,
(24b)m = 0 0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole house e	xtract ver	ntilation o	r positiv	re input v	ı ventilatio	n from o	utside				l	
if (22b)m < 0.5			•					.5 × (23b)			
(24c)m= 0.52 0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
d) If natural ventila												
if $(22b)m = 1, 1$		T		·	· ·		r -				Ī	(24d)
(24d)m= 0 0	0	0	0	0	0	0	0 (0.7)	0	0	0		(24d)
Effective air chang	e rate - ei	nter (24a) or (24b 0.5	o) or (240 0.5	c) or (24 0.5	d) in box	` ´ 	0.5	0.5	0.5	1	(25)
(25)m= 0.52 0.52	0.51	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(23)
3. Heat losses and	neat loss	paramet	er:									
	oss a (m²)	Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²-l		A X k kJ/K
Doors	, ,			2.08	x	1		2.08	,			(26)
Windows Type 1				4.05	x1,	/[1/(1.2)+	0.04] =	4.64	=			(27)
Windows Type 2				3.13	x1,	/[1/(1.2)+	0.04] =	3.58	=			(27)
Walls Type1 39	.89	7.18		32.71	x	0.21	─	6.87	=	60	196	62.6 (29)
Walls Type2	5.71	2.08		14.63	3 x	0.24	<u> </u>	3.54	F i	60	877	7.8 (29)
Roof 5	.04	0		51.04	x x	0.11	-	5.61	=	9	459	0.36 (30)
Total area of elemen	ts, m²			107.6	4							(31)
Party wall				14.53	3 x	0		0		110	159	98.3 (32)
Party floor				51.04						40	204	11.6 (32a)
Internal wall **				86.04	=				Ī	9	774	=
* for windows and roof win					ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	ıs given in	paragraph		`
Fabric heat loss, W/k						(26)(30)) + (32) =				26.32	(33)
Heat capacity Cm =	•	,					((28).	(30) + (32	2) + (32a).	(32e) =	7714.02	=
Thermal mass param	eter (TMI	P = Cm -	- TFA) ir	n kJ/m²K			= (34)	÷ (4) =			151.14	(35)
For design assessments v			construct	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
Thermal bridges : S	L x Y) cal	culated	using Ap	pendix ł	<						5.14	(36)
if details of thermal bridging	g are not kr	nown (36) =	= 0.05 x (3	1)								
Total fabric heat loss							(33) +	(36) =			31.46	(37)
Ventilation heat loss	i	1			ı			= 0.33 × ()	ı	
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m= 20.97	20.76	20.54	20.13	20.13	20.13	20.13	20.13	20.13	20.13	20.13	20.13		(38)
Heat transfer	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m= 52.43	52.22	52.01	51.59	51.59	51.59	51.59	51.59	51.59	51.59	51.59	51.59		
Heat loss para	ameter (I	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ . (4)	12 /12=	51.75	(39)
(40)m= 1.03	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01		
Number of da	ys in mo	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	1.01	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
				-	-	-			-	-			
4. Water hea	ating ene	rgy requi	irement:								kWh/ye	ar:	
Assumed occ	unancv	NI									70		(42)
if TFA > 13. if TFA £ 13.	.9, N = 1		[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		.72		(42)
Annual average	•	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		75	5.07		(43)
Reduce the annu	ial average	hot water	usage by	5% if the c	lwelling is	designed t			se target o				,
not more that 125	· ·	· ·	r day (ali w T	1	not ana co I	· · · · · ·	1		ı				
Jan	Feb	Mar	Apr	May	Jun	Jul Table 10 V	Aug	Sep	Oct	Nov	Dec		
Hot water usage	1	1	1	1	1	1	1	<u> </u>	<u> </u>	Г			
(44)m= 82.57	79.57	76.57	73.57	70.56	67.56	67.56	70.56	73.57	76.57	79.57	82.57		 ,,,
Energy content o	f hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1	L	900.81	(44)
(45)m= 122.46	107.1	110.52	96.35	92.45	79.78	73.93	84.83	85.85	100.05	109.21	118.59		
	1	I .	<u>I</u>	<u> </u>	<u>I</u>	<u> </u>	<u> </u>	-	rotal = Su	m(45) ₁₁₂ =	=	1181.11	(45)
If instantaneous	water heati	ing at point	of use (no	hot wate	r storage),	enter 0 in	boxes (46)) to (61)	_	_			
(46)m= 18.37	16.07	16.58	14.45	13.87	11.97	11.09	12.72	12.88	15.01	16.38	17.79		(46)
Water storage Storage volun		\ includir	na any c	olar or M	WHDC	ctorogo	within co	amo voc	col				(47)
_	,	,	•			•		anie ves	SEI		0		(47)
If community In Otherwise if n	_			_			. ,	ers) ente	er 'O' in <i>(</i>	47)			
Water storage			, (uo					o. o, o	· · · · · ·	,			
a) If manufac	turer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temperature	factor fro	m Table	2b								0		(49)
Energy lost fro		_	-				(48) x (49)) =			0		(50)
b) If manufac			-										(54)
Hot water stor	•			e z (KVV	n/iitre/ua	ay)					0		(51)
Volume factor	-		011 4.0								0		(52)
Temperature	factor fro	m Table	2b							-	0		(53)
Energy lost fro	om wate	r storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or	(54) in (55)									0		(55)
Water storage	e loss cal	culated f	for each	month			((56)m = (55) × (41)ı	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contain	ns dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хH	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
	•	-	-	-	-	-	-	-	-	-			

Primary circuit loss (annual) from Table 3	(58)
Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m	(00)
(modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)	
(59)m= 0 0 0 0 0 0 0 0 0 0 0 0	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m	
(61)m= 14.53 13.12 14.52 14.04 14.51 14.04 14.51 14.04 14.51 14.05 14.51	52 (61)
Total heat required for water heating calculated for each month (62) m = $0.85 \times (45)$ m + (46) m + (57) r	m + (59)m + (61)m
(62)m= 136.98 120.22 125.04 110.4 106.96 93.82 88.43 99.34 99.89 114.56 123.26 133.	.12 (62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heat	ting)
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	
(63)m= 0 0 0 0 0 0 0 0 0 0 0 0	(63)
Output from water heater	
(64)m= 136.98 120.22 125.04 110.4 106.96 93.82 88.43 99.34 99.89 114.56 123.26 133.	.12
Output from water heater (annual) ₁₁₂	1352 (64)
Heat gains from water heating, kWh/month 0.25 $'$ [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (58)m + (58)m + (51)m]	9)m]
(65)m= 44.35 38.89 40.38 35.55 34.37 30.04 28.21 31.83 32.05 36.89 39.82 43.0	06 (65)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from communi	ity heating
5. Internal gains (see Table 5 and 5a):	
Metabolic gains (Table 5), Watts	
	ec
(66)m= 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25 103.25	.25 (66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
(67)m= 35.81 31.81 25.87 19.58 14.64 12.36 13.35 17.36 23.3 29.58 34.53 36.8	81 (67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5	
(68)m= 223.78 226.11 220.25 207.8 192.07 177.29 167.42 165.09 170.95 183.4 199.13 213.	.91 (68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	
(69)m= 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05 47.05	05 (69)
Pumps and fans gains (Table 5a)	
(70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(70)
Losses e.g. evaporation (negative values) (Table 5)	
(71)m= -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83 -68.83	.83 (71)
Water heating gains (Table 5)	
(72)m= 59.61 57.87 54.27 49.37 46.19 41.72 37.91 42.79 44.52 49.59 55.31 57.8	88 (72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$	
(73)m= 403.66 400.25 384.85 361.21 337.36 315.83 303.14 309.7 323.22 347.04 373.43 393.	.06 (73)
6. Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.	
Orientation: Access Factor Area Flux g_ FF	Gains
Table 6d m ² Table 6a Table 6b Table 6c	(W)
East 0.9x 0.77 x 3.13 x 19.64 x 0.63 x 0.7	= 18.79 (76)
East 0.9x 0.77 x 3.13 x 38.42 x 0.63 x 0.7	= 36.75 (76)

	г		_					1							-
East	0.9x	0.77	X	3.1	3	X	63.27	X		0.63	_ ×	0.7	=	60.53	(76)
East	0.9x	0.77	X	3.1	3	X	92.28	X		0.63	x	0.7	=	88.27	(76)
East	0.9x	0.77	X	3.1	3	X	113.09	X		0.63	X	0.7	=	108.18	(76)
East	0.9x	0.77	X	3.1	3	X	115.77	X		0.63	x	0.7	=	110.74	(76)
East	0.9x	0.77	X	3.1	3	X	110.22	X		0.63	x	0.7	=	105.43	(76)
East	0.9x	0.77	X	3.1	3	X	94.68	X		0.63	x [0.7	=	90.56	(76)
East	0.9x	0.77	X	3.1	3	X	73.59	X		0.63	x [0.7	=	70.39	(76)
East	0.9x	0.77	X	3.1	3	x	45.59	X		0.63	x [0.7	=	43.61	(76)
East	0.9x	0.77	X	3.1	3	X	24.49	X		0.63	x [0.7	=	23.43	(76)
East	0.9x	0.77	X	3.1	3	X	16.15	X		0.63	x [0.7	=	15.45	(76)
South	0.9x	0.77	X	4.0	5	X	46.75	X		0.63	x [0.7	=	57.87	(78)
South	0.9x	0.77	X	4.0	5	X	76.57	X		0.63	x	0.7	=	94.77	(78)
South	0.9x	0.77	x	4.0	5	x	97.53	X		0.63	x	0.7		120.72	(78)
South	0.9x	0.77	X	4.0	5	x	110.23	X		0.63	x	0.7		136.44	(78)
South	0.9x	0.77	X	4.0	5	x	114.87	X		0.63	x	0.7		142.18	(78)
South	0.9x	0.77	x	4.0	5	X	110.55	X		0.63	x	0.7	=	136.83	(78)
South	0.9x	0.77	x	4.0	5	X	108.01	X		0.63	x	0.7	_ =	133.69	(78)
South	0.9x	0.77	X	4.0	5	x	104.89	X		0.63	x	0.7		129.83	(78)
South	0.9x	0.77	x	4.0	5	X	101.89	X		0.63	x	0.7	_ =	126.11	(78)
South	0.9x	0.77	x	4.0	5	X	82.59	X		0.63	x	0.7	_ =	102.22	(78)
South	0.9x	0.77	x	4.0	5	X	55.42	X		0.63	_ x [0.7	_ =	68.59	(78)
South	0.9x	0.77	x	4.0	5	X	40.4	X		0.63	x	0.7	_ =	50	(78)
								_							_
Solar g	jains in	watts, calc	ulated	for each	month	1		(83)m	n = Su	m(74)m	.(82)m			_	
(83)m=	76.65	131.52 1	81.25	224.71	250.36	2	47.57 239.12	220	0.4	196.5	145.83	92.02	65.45		(83)
Total g	ains – i			` '	` '		83)m , watts							_	
(84)m=	480.32	531.77	566.1	585.93	587.72	5	542.26	530	0.1	519.72	492.86	465.45	458.51		(84)
7. Me	an inter	nal temper	ature ((heating	seasor	າ)									
Temp	erature	during hea	ating p	eriods in	the livi	ng	area from Tal	ble 9	, Th1	(°C)				21	(85)
Utilisa	ation fac	tor for gair	ns for li	iving are	a, h1,n	ı (s	ee Table 9a)								
	Jan	Feb	Mar	Apr	May		Jun Jul	А	ug	Sep	Oct	Nov	Dec		
(86)m=	0.95	0.93	0.89	0.81	0.7	(0.55 0.41	0.4	14	0.62	0.82	0.92	0.96		(86)
Mean	interna	l temperatu	ure in I	iving are	a T1 (f	ollo	w steps 3 to 7	7 in T	able	9c)					
(87)m=	19.84		20.3	20.59	20.82	_	20.94 20.99	20.		20.91	20.64	20.2	19.81	7	(87)
Temn	erature	during hea	ating n	erinds in	rest of	dw	relling from Ta	ahle (O Th	2 (°C)				_	
(88)m=	20.06		20.07	20.07	20.07	_	20.07 20.07	20.		20.07	20.07	20.07	20.07	7	(88)
		<u> </u>		!										_	•
(89)m=	0.94		0.87	0.78	veiling, 0.66	1	m (see Table 0.48 0.33	9a) 0.3	35 T	0.56	0.79	0.91	0.95	٦	(89)
		<u> </u>		!						!		1 0.01	1 0.90	J	(00)
			- 1	- 1		Ť	T2 (follow ste	r i —		1		1007	40.54	٦	(00)
(90)m=	18.54	18.82	19.19	19.6	19.88		20.03 20.07	20.	00	20 fl	19.66	19.07 ng area ÷ (4	18.51	1 0.5	(90)
										"	_, (—	ng aroa → (·	., –	0.5	(91)

Mean interna		- 1 / 1	. 11 1.				. /4 (1	A\ TO					
(92)m= 19.19	19.42	19.74	r tne wn 20.09	20.35	111ng) = 1 20.48	20.52	+ (1 – IL 20.52	20.45	20.15	19.63	19.15		(92)
` '										19.03	19.15		(92)
Apply adjust (93)m= 19.04	19.27	19.59	19.94	20.2	20.33	20.37	20.37	20.3	20 20	19.48	19		(93)
8. Space he			13.34	20.2	20.55	20.57	20.57	20.3	20	19.40	19		(00)
Set Ti to the			mporatu	o obtoin	and at at	op 11 of	Table 0	h so tha	t Ti m_/	76)m an	d ro colo	ulato	
the utilisation					ieu ai sii	ер птог	i able 9	D, SO IIIA	ıt 11,111=(rojili ali	u re-caic	uiale	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fa							- 3						
(94)m= 0.93	0.9	0.86	0.78	0.66	0.5	0.35	0.38	0.57	0.78	0.89	0.94		(94)
Useful gains	, hmGm	, W = (94	1)m x (84	1)m									
(95)m= 445.71	478.58	484.24	456.44	389.37	282.85	192.02	201.28	297.97	386.26	416.24	429.15		(95)
Monthly ave	rage exte	rnal tem	perature	from Ta	able 8	•		•					
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss ra	e for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m= 772.62	750.54	680.9	569.61	438.37	295.85	194.66	204.8	319.88	484.76	638.61	763.74		(97)
Space heati	ng require	ement fo	r each m	nonth, k\	/Vh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m= 243.22	182.76	146.31	81.48	36.46	0	0	0	0	73.28	160.1	248.94		
							Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	1172.55	(98)
Space heati	ng require	ement in	kWh/m²	/year								22.97	(99)
9a. Energy re	quiremer	nts — Indi	vidual h	eating s	vstems i	ncluding	micro-C	.HD)					
Space heat	•	ito iriai	vidual III		y Storris i	ricidaling	TITIOTO C) II)					
Fraction of s	•	at from se	econdar	//supple	mentary	system						0	(201)
Fraction of s	•		-		,	•	(202) – 1	(224)					╡`
	pado noc						(202) = 1	- (201) =				1	(202)
Fraction of to	stal heati	na from i	•	. ,				- (201) = 02) x [1 -	(203)] =			1	(202)
Fraction of to		•	main sys	stem 1				- (201) = 02) × [1 -	(203)] =			1	(204)
Efficiency of	main spa	ace heati	main sys	stem 1 em 1				, ,	(203)] =				(204)
	main spa	ace heati	main sys	stem 1 em 1	g systen			, ,	(203)] =			1	(204)
Efficiency of	main spa	ace heati	main sys	stem 1 em 1	g systen Jun			, ,	(203)] =	Nov	Dec	1 89.9	(204) (206) (208)
Efficiency of Efficiency of Jan Space heating	main spa seconda Feb ng require	ace heati ry/supple Mar ement (c	main systementar Apralculated	stem 1 em 1 y heating May	Jun	າ, %	(204) = (2	02) × [1 –	Oct	Nov		1 89.9 0	(204) (206) (208)
Efficiency of Efficiency of Jan	main spa seconda Feb ng require	ace heati ry/supple Mar	main sys ing syste ementar Apr	stem 1 em 1 y heating May	Jun	າ, %	(204) = (2	02) × [1 –		Nov 160.1	Dec 248.94	1 89.9 0	(204) (206) (208)
Efficiency of Efficiency of Jan Space heating	main spa seconda Feb ng require 182.76	mace heating ry/supplement (compared to 146.31	main systementary Apr Alculated	em 1 em 1 y heating May d above)	Jun	n, % Jul	(204) = (2	02) × [1 –	Oct			1 89.9 0	(204) (206) (208)
Efficiency of Efficiency of Jan Space heatin	main spa seconda Feb ng require 182.76 3)m x (20	mace heating ry/supplement (compared to 146.31	main systementary Apr Alculated	em 1 em 1 y heating May d above)	Jun	n, % Jul	(204) = (2 Aug 0	02) × [1 -	Oct 73.28	160.1	248.94	1 89.9 0	(204) (206) (208) ar
Efficiency of Efficiency of Jan Space heatii 243.22 (211)m = {[(986)]	main spa seconda Feb ng require 182.76 3)m x (20	Mar ement (c 146.31	main systementar Apr alculated 81.48 00 ÷ (20	etem 1 em 1 y heating May d above) 36.46	Jun) 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 –	Oct 73.28	160.1	248.94	1 89.9 0	(204) (206) (208) ar
Efficiency of Efficiency of Jan Space heatii 243.22 (211)m = {[(966)]	main spa seconda Feb ng require 182.76 3)m x (20 203.29	Mar ement (c 146.31) } x 1 162.75	main systementary Apr alculated 81.48 00 ÷ (20)	m 1 y heating May d above 36.46 6) 40.55	Jun) 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 -	Oct 73.28	160.1	248.94	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatii 243.22 (211)m = {[(96) 270.54]	main spa seconda Feb ng require 182.76 3)m x (20 203.29	Mar ement (c 146.31 04)] } x 1 162.75	Apr alculated 81.48 00 ÷ (20 90.64	m 1 y heating May d above 36.46 6) 40.55	Jun) 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 -	Oct 73.28	160.1	248.94	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(9) 270.54]	main spa seconda Feb ng require 182.76 3)m x (20 203.29	Mar ement (c 146.31 04)] } x 1 162.75	Apr alculated 81.48 00 ÷ (20 90.64	m 1 y heating May d above 36.46 6) 40.55	Jun) 0	n, % Jul o	(204) = (2 Aug 0 Tota	02) x [1 - Sep 0	73.28 81.51 sar) =Sum(2	160.1 178.09 211) _{15,1012}	248.94 276.9	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatii 243.22 (211)m = {[(98) 270.54} Space heatii = {[(98)m x (28)	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1	Mar ement (c 146.31 (4)] } x 1 162.75 econdary 00 ÷ (20	main systementary Apr alculated 81.48 00 ÷ (20 90.64	month	Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 – Sep 0 0 kWh/yea	73.28 81.51 sar) =Sum(2	160.1 178.09 211) _{15,1012}	248.94 276.9	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatii 243.22 (211)m = {[(98) 270.54} Space heatii = {[(98)m x (28)	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1	Mar ement (c 146.31 (4)] } x 1 162.75 econdary 00 ÷ (20	main systementary Apr alculated 81.48 00 ÷ (20 90.64	month	Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) x [1 - Sep 0	73.28 81.51 sar) =Sum(2	160.1 178.09 211) _{15,1012}	248.94 276.9	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(98) 270.54} Space heatin = {[(98)m x (2) (215)m=0 Water heatin Output from v	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0	Mar ement (c 146.31 (4)] } x 1 162.75 econdary 00 ÷ (20 0	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/ 8) 0	month stem 1 may heating May dabove 36.46 40.55	Jun 0 0	o 0	(204) = (2 Aug 0 Tota 0 Tota	02) x [1 - Sep 0 0 0 1 (kWh/yea	Oct 73.28 81.51 81.51 o o ar) =Sum(2	160.1 178.09 211) _{15,1012} 0	248.94 276.9 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ar (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(9i 270.54] Space heatin = {[(98)m x (2i(215)m=0] Water heatin Output from v 136.98	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0	Mar ement (c 146.31) } x 1 162.75 econdar; 00 ÷ (20 0 ter (calcilize)	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/8) 0	stem 1 em 1 y heating May d above; 36.46 60 40.55 month	Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) x [1 - Sep 0	73.28 81.51 sar) =Sum(2	160.1 178.09 211) _{15,1012}	248.94 276.9	1 89.9 0 kWh/ye	(204) (206) (208) ar (211) (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(98) 270.54} Space heatin = {[(98)m x (2) (215)m= 0 Water heatin Output from v 136.98 Efficiency of v	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0	Mar ement (c 146.31 04)] } x 1 162.75 econdary 00 ÷ (20 0	Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/ 8) 0	May heating May dabove; 36.46 he	Jun 0 0 0 93.82	o 0 88.43	(204) = (2 Aug 0 Tota 99.34	02) x [1 - Sep 0 0 0 1 (kWh/yea 0 1 (kWh/yea 99.89	Oct 73.28 81.51 ar) =Sum(2 0 114.56	160.1 178.09 211) _{15,1012} 0 215) _{15,1012}	248.94 276.9 = 0 =	1 89.9 0 kWh/ye	(204) (206) (208) (208) ar (211) (211)
Efficiency of Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(98) 270.54} Space heatin = {[(98)m x (2) (215)m= 0 Water heatin Output from v 136.98 Efficiency of v (217)m= 88.72	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0 g vater hea 120.22 vater hea 88.6	Mar ement (c 146.31) 3 x 1 162.75 econdary 00 ÷ (20 0) ter (calculater 88.4	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/8) 0	month stem 1 may heating May dabove 36.46 40.55	Jun 0 0	o 0	(204) = (2 Aug 0 Tota 0 Tota	02) x [1 - Sep 0 0 0 1 (kWh/yea	Oct 73.28 81.51 81.51 o o ar) =Sum(2	160.1 178.09 211) _{15,1012} 0	248.94 276.9 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ar (211) (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(98) 270.54]} Space heatin = {[(98)m x (2) (215)m= 0} Water heatin Output from v 136.98 Efficiency of v (217)m= 88.72 Fuel for water	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0 g vater hea 120.22 vater hea 88.6	Mar ement (c 146.31 04)] } x 1 162.75 econdary 00 ÷ (20 0	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/8) 0 ulated al 110.4 88.03 onth	May heating May dabove; 36.46 he	Jun 0 0 0 93.82	o 0 88.43	(204) = (2 Aug 0 Tota 99.34	02) x [1 - Sep 0 0 0 1 (kWh/yea 0 1 (kWh/yea 99.89	Oct 73.28 81.51 ar) =Sum(2 0 114.56	160.1 178.09 211) _{15,1012} 0 215) _{15,1012}	248.94 276.9 = 0 =	1 89.9 0 kWh/ye	(204) (206) (208) (208) ar (211) (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(9i 270.54] Space heatin = {[(98)m x (2i) (215)m = 0] Water heatin Output from v 136.98 Efficiency of v (217)m = 88.72 Fuel for water (219)m = (64)	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0 g vater hea 120.22 vater hea 88.6 heating,)m x 100	mar ement (c 146.31 162.75 162.75 econdary 00 ÷ (20 125.04 ater 88.4 kWh/mc 0 ÷ (217)	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/ 8) 0 ulated al 110.4 88.03 onth m	stem 1 em 1 y heating May d above) 36.46 6) 40.55 month 0 bove) 106.96	Jun 0 0 0 93.82 86.7	0 0 88.43 86.7	(204) = (2 Aug 0 Tota 99.34 86.7	02) x [1 - Sep 0 0 0 0 0 kWh/yea 99.89 86.7	Oct 73.28 81.51 ar) =Sum(2 0 ar) =Sum(2 114.56 87.92	160.1 178.09 211) _{15,1012} 0 215) _{15,1012} 123.26	248.94 276.9 = 0 = 133.12	1 89.9 0 kWh/ye	(204) (206) (208) (208) ar (211) (211)
Efficiency of Efficiency of Jan Space heatin 243.22 (211)m = {[(98) 270.54]} Space heatin = {[(98)m x (2) (215)m= 0} Water heatin Output from v 136.98 Efficiency of v (217)m= 88.72 Fuel for water	main spa seconda Feb ng require 182.76 3)m x (20 203.29 ng fuel (s 01)] } x 1 0 g vater hea 120.22 vater hea 88.6	Mar ement (c 146.31 04)] } x 1 162.75 econdary 00 ÷ (20 0	main systementary Apr alculated 81.48 00 ÷ (20 90.64 y), kWh/8) 0 ulated al 110.4 88.03 onth	May heating May dabove; 36.46 he	Jun 0 0 0 93.82	o 0 88.43	(204) = (2 Aug 0 Tota 99.34 86.7	02) x [1 - Sep 0 0 0 1 (kWh/yea 0 1 (kWh/yea 99.89	Oct 73.28 81.51 0 ar) =Sum(2 114.56 87.92	160.1 178.09 211) _{15,1012} 0 215) _{15,1012}	248.94 276.9 = 0 =	1 89.9 0 kWh/ye	(204) (206) (208) (208) ar (211) (211)

Annual totals Space heating fuel used, main system 1		kWh/year	kWh/year 1304.29
Water heating fuel used			1538.76
Electricity for pumps, fans and electric keep-hot			1000.70
mechanical ventilation - balanced, extract or pos	sitive input from outsi	ide [36.02 (230a)
central heating pump:		[30 (230c)
boiler with a fan-assisted flue			45 (230e)
Total electricity for the above, kWh/year	SU	lm of (230a)(230g) =	111.02 (231)
Electricity for lighting			252.99 (232)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48	(240)
Space heating - main system 2	(213) x	0)	(0.01 = 0 (241)
Space heating - secondary	(215) x	13.19	0.01 = 0 (242)
Water heating cost (other fuel)	(219)	3.48	(0.01 = 53.55 (247)
Pumps, fans and electric keep-hot	(231)	13.19	(249)
(if off-peak tariff, list each of (230a) to (230g) sepa Energy for lighting	arately as applicable (232)	· · · ·	ding to Table 12a < 0.01 = 33.37 (250)
Additional standing charges (Table 12)			120 (251)
Appendix Q items: repeat lines (253) and (254) as	s needed		
Total energy cost (245)(24	7) + (250)(254) =		266.95 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) x (26	56)] ÷ [(4) + 45.0] =		1.17 (257)
SAP rating (Section 12)			83.71 (258)
12a. CO2 emissions – Individual heating system	s including micro-CF	HP	
	Energy kWh/year	Emission fact kg CO2/kWh	tor Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	= 281.73 (261)
Space heating (secondary)	(215) x	0.519	= 0 (263)
Water heating	(219) x	0.216	= 332.37 (264)
Space and water heating	(261) + (262) + (263)	+ (264) =	614.1 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	= 57.62 (267)
Electricity for lighting	(232) x	0.519	= 131.3 (268)
Total CO2, kg/year		sum of (265)(271) =	803.02 (272)

CO2 emissions per m²

(272) ÷ (4) =

15.73 (273)

89 (274)

13a. Primary Energy

El rating (section 14)

	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	1591.23 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	1877.29 (264)
Space and water heating	(261) + (262) + (263) + (264) =		3468.52 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	340.84 (267)
Electricity for lighting	(232) x	0 =	776.67 (268)
'Total Primary Energy	sum	of (265)(271) =	4586.02 (272)
Primary energy kWh/m²/year	(272)	÷ (4) =	89.85 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 26 February 2020

Property Details: 08-19-79354 Plot 151 - Type D

Dwelling type:FlatLocated in:EnglandRegion:East Anglia

Cross ventilation possible:NoNumber of storeys:1Front of dwelling faces:West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 151.14

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
2 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 80.51 (P1)

Transmission heat loss coefficient: 31.5

Summer heat loss coefficient: 111.97 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

South (Front) 0 1 East (Side) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South (Front)	0.85	0.9	1	0.76	(P8)
East (Side)	0.85	0.9	1	0.76	(P8)

Solar gains

Orientation		Area	Flux	g_{-}	FF	Shading	Gains
South (Front)	0.9 x	4.05	114.84	0.63	0.7	0.76	141.22
East (Side)	0.9 x	3.13	119.47	0.63	0.7	0.76	113.54
						Total	254.76 (P3/P4)

Internal gains:

	June	July	August
Internal gains	312.83	300.14	306.7
Total summer gains	579.37	554.9	542.84 (P5)
Summer gain/loss ratio	5.17	4.96	4.85 (P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6
Thermal mass temperature increment	0.94	0.94	0.94
Threshold temperature	21.52	23.5	23.39 (P7)
Likelihood of high internal temperature	Slight	Medium	Medium

Assessment of likelihood of high internal temperature: Medium