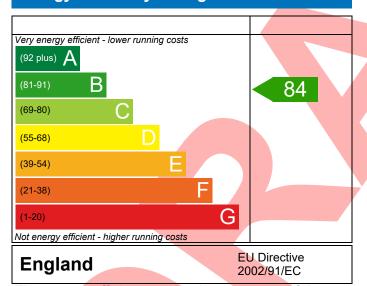
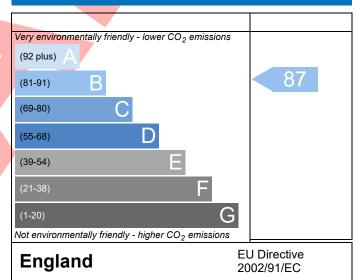
PREDICTED ENERGY ASSESSMENT


Plot 150, 2 Bed, Dwelling type: Flat, Semi-Detached

K+B Date of assessment: 22/09/2020
Produced by: Kieran Davies
Total floor area: 69.65 m²

This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.


The energy performance has been assessed using the Government approved SAP2012 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO₂) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

Environmental Impact (CO₂) Rating

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Assessment Reference Prop Type Ref Flat Type 16 GF Flat Type 16 GF Florering F	Property Reference	4907-0012-4592-15	0				Issued on Date	22/09/2020
Plot 150, 2 Bed, K+B	Assessment	Plot 150				Prop Type Ref	Flat Type 16 GF	
SAP Rating	Reference							
ST ST ST ST ST ST ST ST	Property	Plot 150, 2 Bed, K+E	3					
Colemnia (t/year) General Requirements Compliance Pass	SAP Rating			84 B	DER	17.59	TER	18.66
Assessor Details Mr. Kieran Davies, Kieran Davies, Tel: 01884 242050, Kieran Cavies, Gaessc.co.uk Kieran.davies@aessc.co.uk Kieran.davies.co.jak Kieran.	Environmental			87 B	% DER <ter< td=""><td></td><td>5.71</td><td></td></ter<>		5.71	
Assessor Details Mr. Kieran Davies, Kieran Davies , Tel: 01884 242050, Kieran.davies@aessc.co.uk South, Countryside NH & C SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (OFEE) Target Fabric Energy Efficiency (OFEE) Target Fabric Energy Efficiency (OFEE) Target Fabric Standards 2 Fabric U-values Element External wall O.18 (max. 0.36) O.18 (max. 0.70) Pass Party wall O.00 (max. 0.20) - Pass Floor O.15 (max. 0.25) Openings Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability air 50 pascals Maximum Mir. Kieran Davies, Kieran Davies, Tel: 01884 242050, Kieran.davies@aessc.co.uk T716-0001 TR16-0001 T				1.05	DFEE	46.73	TFEE	50.79
Kieran.davies@aessc.co.uk	General Requireme	nts Compliance		Pass	% DFEE <tfee< td=""><td></td><td>8.00</td><td></td></tfee<>		8.00	
Client South, Countryside NH & C SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 – Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric Energy Efficiency (DFEE) Limiting Fabric Standards 2 Fabric U-values Element External wall D.18 (max. 0.30) Pass Floor D.15 (max. 0.25) D.15 (max. 0.70) Pass Party wall D.00 (max. 0.20) Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Limiting System Efficiencies	Assessor Details	Mr. Kieran Davies, Kiera	an Davies	, Tel: 0188	34 242050,		Assessor ID	T716-0001
SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Liniting Fabric Standards 2 Fabric U-values Element External wall O.00 (max. 0.20) Pass Party wall O.00 (max. 0.20) Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2 Thermal bridging Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum [10.0 Indicate Space Support Support Pass [5.00] Mains gas Mains gas Mains gas Malns gas Mains (A50) Mains (A50) Mains (A50) Mains (A50) Mains (A50) Mains (A50) Mains (A								
Triterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Carbon Dioxide Emission Rate (DER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Dwelling Fabric Energy Efficiency (DFEE) Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - 0.15 (max. 0.25) 0.15 (max. 0.70) Pass 2 Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Pass Ilmitting System Efficiencies	Client	South, Countryside NH	& C					
Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Energy Efficiency (DFEE) Limiting Fabric Standards Z Fabric U-values Element External wall O.18 (max. 0.30) Pass Party wall O.00 (max. 0.20) Pass Pass Pass Pass Party wall O.015 (max. 0.25) Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass Pass Pass Pass Party wall O.18 (max. 0.70) Pass Pass Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass Pass Party and bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Air permeability Air permeability Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Pass Limiting System Efficiencies	SUMARY FOR INPUT	DATA FOR New Build (A	As Designo	ed)				
Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.59 10.07 (-5.7%) 10.07 (-5.7	Criterion 1 – Achievi	ng the TER and TFEE rat	e					
Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Carbon Dioxide Emission Rate (DER) T7.59 Lor (-5.7%) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Standards 2 Fabric U-values Element External wall Duelling Fabric Standards 2 Fabric U-values Filor Dougling System Efficiency 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values Element Average Highest External wall Duelling Fabric Standards 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values Element Average Highest External wall Duelling Fabric Standards 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values Floor Duelling Fabric Standards 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values Floor Duelling Fabric Standards Floor Duelling Fabric Standards 1.25 (max. 0.30) Duelling Fabric Standards 2 Fabric U-values Floor Duelling Fabric Standards Average Highest External wall Duelling Fabric Standards 1.26 (max. 0.70) Pass Duelling Fabric Standards Pass Duelling Fabric Standards 1.25 (max. 0.20) Duelling Fabric Standards Duelling Fabric Standards Average Highest External wall Duelling Fabric Standards Duelling Fabric Standards Duelling Fabric Standards Duelling Fabric Standards Average Highest External wall Duelling Fabric Standards Duelling Fabric Standards Duelling Fabric Standards Average Highest External wall Duelling Fabric Standards Duelling Fabric St	1a TER and DER							
Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 17.59 -1.07 (-5.7%) kgCO ₂ /m² Pass -1.07 (-5.7%) kgCO ₂ /m² -1.07 (-5.7%) kgCO ₂ /m² -1.0	Fuel for main hea	ating		Mains ga	as			
Dwelling Carbon Dioxide Emission Rate (DER) 17.59 -1.07 (-5.7%) kgCO ₂ /m ² kWh/m ² /yr k	Fuel factor			1.00 (ma	nins gas)			
Target Fabric Energy Efficiency (TFEE) So.79 kWh/m²/yr Wh/m²/yr Pass Pass Wh/m²/yr Pass Pass Wh/m²/yr Pass Pass Pass Wh/m²/yr Pass Pa	Target Carbon Die	oxide Emission Rate (TEF	₹)	18.66			kgCO ₂ /m ²	
Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 46.73 4.1 (-8.1%) Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 Maximum 10.0 Maximum 10.0 Pass Done Pass Limiting System Efficiencies	Dwelling Carbon	Dioxide Emission Rate (D	DER)	17.59 kgCO ₂ /m ²				Pass
Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 46.73 kWh/m²/yr 44.1 (-8.1%) Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies				-1.07 (-5	.7%)		kgCO ₂ /m ²	
Dwelling Fabric Energy Efficiency (DFEE) 46.73 kWh/m²/yr kWh/m²/yr Pass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies								
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2 a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	_							
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2 a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Dwelling Fabric E	nergy Efficiency (DFEE)			100			
Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2 a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies				-4.1 (-8.1	1%)		kWh/m²/yr	Pass
Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies					_			
Element Average Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	-							
External wall Party wall O.18 (max. 0.30) Party wall O.00 (max. 0.20) Floor Openings 1.25 (max. 2.00) Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum Maximum Maximum Maximum Maximum Maximum O.18 (max. 0.70) Pass O.15 (max. 0.70) Pass O.15 (max. 0.70) Pass O.163 (max. 3.30) Pass D.163 (max. 0.70) D.163 (max. 0.70) D.163 (max. 0.70) Pass D.163 (max. 0.70) D.164 (max. 0.70) D.165 (max.								
Party wall Pass Floor 0.15 (max. 0.25) Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies						_		
Floor 0.15 (max. 0.25) 0.15 (max. 0.70) Pass Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			•	• /		0.18 (max. 0.7	0)	
Openings 1.25 (max. 2.00) 1.63 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 1.63 (max. 3.30) Pass	*					-	0)	
Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 5.00 (design value) Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			,					
Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		ina	1.25 (ma)	x. 2.00)		1.63 (max. 3.3	U)	Pass
Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies								
Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			ar therma	ı transmit	tances for each j	Junction		
Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			•	E 60 / :	, , ,		270 25	
Limiting System Efficiencies		ity at 50 pascals			sign value)			
				10.0			m²/(n.m²) @ 50 P	a Pass

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Main heating system	Boiler system with radiators or underfloor - Mains gas	Pass
	Data from database	
	Potterton ASSURE 36 COMBI	
	Combi boiler	
	Efficiency: 89.0% SEDBUK2009	
	Minimum: 88.0%	
Secondary heating system	None	
5 Cylinder insulation		
Hot water storage	No cylinder	
<u>6 Controls</u>		
Space heating controls	Time and temperature zone control	Pass
Hot water controls	No cylinder	
Boiler interlock	Yes	Pass
7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100 %	
Minimum	75 %	Pass
8 Mechanical ventilation		
Continuous extract system (decentralised)		
Specific fan power	0.1900 0.1800	
Maximum	0.7	Pass
Criterion 3 – Limiting the effects of heat gains in sum	nmer	
9 Summertime temperature		
Overheating risk (South East England)	Medium	Pass
Based on:		
Overshading	Average	
Windows facing North	3.10 m², No overhang	
Windows facing East	2.83 m², No overhang	
Windows facing South	5.48 m ² , No overhang	
Windows facing South West	5.26 m ² , No overhang	
Air change rate	3.00 ach	
Blinds/curtains	None	
Criterion 4 – Building performance consistent with D	PER and DFEE rate	
Party Walls		
Туре	U-value	
Filled Cavity with Edge Sealing	0.00 W/m²K	Pass
Air permeability and pressure testing		
3 Air permeability		
Air permeability at 50 pascals	5.00 (design value) m ³ /(h.m ²) @ 50 Pa	
Maximum	10.0 m³/(h.m²) @ 50 Pa	Pass

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

10 Key features

Party wall U-value Door U-value Door U-value

0.00	W/m²K
1.00	W/m²K
1.10	W/m²K

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

RECOMMENDATIONS

	Typical cost	Typical savings per year	Energy efficiency	Environmental impact	Result
Low energy lights			0	0	Already installed
Solar water heating			0	0	Not applicable
Photovoltaic			0	0	Not applicable
Wind turbine			0	0	Not applicable
Totals	£0	£0	B 84	B 87	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

