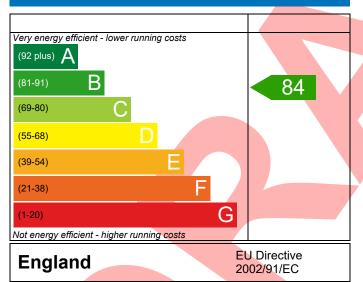
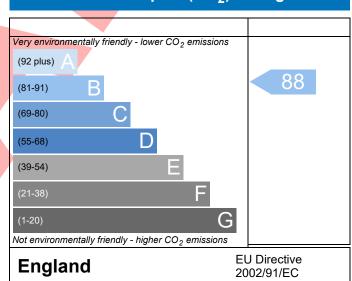
PREDICTED ENERGY ASSESSMENT


Plot 157, 2 Bed, Dwelling type: Flat, Semi-Detached

K+B Date of assessment: 22/09/2020
Produced by: Kieran Davies
Total floor area: 70.14 m²

This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.


The energy performance has been assessed using the Government approved SAP2012 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO₂) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

Environmental Impact (CO₂) Rating

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

1.04 (-6.1%) kgCO ₂ /m ²	Property Reference	4907-0012-4592-15	7					Issue	d on Date	22/	/09/2020
Property	Assessment	Plot 157				Prop	Type Ref	Flat Typ	pe 26 2F		
SAP Rating	Reference										
Environmental 88 B	Property	Plot 157, 2 Bed, K+B	3								
Cotemissions (t/year) General Requirements Compliance Pass Mr. Kieran Davies, Kieran Davies, Tel: 01884 242050, Kieran Davies, Tel: 01884 242050, Kieran Davies, Tel: 01884 242050, Kieran Davies, Mieran Davies, Kieran Davies, Kieran Davies, Tel: 01884 242050, Assessor ID T716-000 SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Mains gas Fuel factor 1.0.0 (mains gas). Target Carbon Dioxide Emission Rate (TER) 17.07 kgC0 ₂ /m² Pass Pass (acc) ₂ /m² 1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) 42.29 kWh/m²/yr Dwelling Fabric Energy Efficiency (DFEE) 40.48 kWh/m²/yr Pass Criterion 2 - Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Limiting System Efficiencies	SAP Rating			84 B	DER		16.03	TEI	R		17.07
Assessor Details	Environmental			88 B	% DER <ter< td=""><td></td><td></td><td></td><td>6.12</td><td></td><td></td></ter<>				6.12		
Assessor Details Mr. Kieran Davies, Kieran Davies, Tel: 01884 242050, Kieran.davies@aessc.co.uk South, Countryside NH & C SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 – Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) A0.48 Element External wall Average Highest External wall O.17 (max. 0.30) Parsy Parsy Average Highest External wall O.00 (max. 0.20) Parsy Roof O.11 (max. 0.20) O.11 (max. 0.35) Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 Tabremab birdging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.00 10.10		-		1.00	DFEE		40.48		EE		42.29
Kieran.davies@aessc.co.uk	General Requireme	nts Compliance		Pass	% DFEE <tfe< td=""><td>E</td><td></td><td></td><td>4.28</td><td></td><td></td></tfe<>	E			4.28		
Client South, Countryside NH & C SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Tarbon Dioxide Emission Rate (DER) 16.03 1.00 (mains gas) 16.03 1.00 (mains gas) 16.03 1.00 (mains gas) 16.03 17.07 18.07 18.07 18.07 Pass 18.07 19.08 10.09 10.04 10.08 10.08 10.08 10.09 10.09 10.09 10.09 10.00	Assessor Details	Mr. Kieran Davies, Kiera	ın Davies ,	Tel: 0188	34 242050,			Ass	sessor ID	T7	16-0001
SUMARY FOR INPUT DATA FOR New Build (As Designed) Criterion 1 - Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 16.03 Fuel factor 1.04 (-6.1%) Fuel factor Target Carbon Dioxide Emission Rate (DER) 16.03 Fuel factor 1.04 (-6.1%) Fuel factor Target Fabric Energy Efficiency (TFEE) Fuelling Fabric Energy Efficiency (DFEE) Fuelling Fabric Energy Efficiency (DFEE) Fuelling Fabric Standards 2 Fabric U-values Fuel O.17 (max. 0.30) Fuel O.18 (max. 0.70) Fuel Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Standards 1 Fabric Standards 2 Fabric U-values Fuel Fabric Stan											
Triterion 1 – Achieving the TER and TFEE rate 1a TER and DER Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 15.00 (mains gas) Target Carbon Dioxide Emission Rate (DER) 16.03 Fuel factor 1.00 (mains gas) Fuel factor Target Carbon Dioxide Emission Rate (DER) Fuelling Carbon Dioxide Emission Rat	Client	South, Countryside NH	& C								
Target Carbon Dioxide Emission Rate (TER) Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) Target Fabric Energy Efficiency (DFEE) A0.48 Limiting Fabric Standards 2 Fabric U-values Element Average Average Highest External wall O.17 (max. 0.30) O.18 (max. 0.70) Pass Pass Coriterion 2 - Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Fabric U-values Roof O.11 (max. 0.20) O.11 (max. 0.35) Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Pass Limiting System Efficiencies	SUMARY FOR INPUT	DATA FOR New Build (A	As Designe	ed)							
Fuel for main heating Fuel factor Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 1.00 (mains gas) 1.00 (mainget) 1.00 (mainget) 1.00 (mainget) 1.00 (mainget) 1.00 (m	Criterion 1 – Achievi	ng the TER and TFEE rate	e								
Fuel factor Target Carbon Dioxide Emission Rate (TER) Target Carbon Dioxide Emission Rate (DER) Dwelling Carbon Dioxide Emission Rate (DER) 16.03 -1.04 (-6.1%) kgCO ₂ /m² Pass -1.04 (-6.1%) kWh/m²/yr Dwelling Fabric Energy Efficiency (DFEE) 40.48 kWh/m²/yr Pass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Air permeability at 50 pascals Maximum 10.0 m²/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	1a TER and DER										
Target Carbon Dioxide Emission Rate (TER) Dwelling Carbon Dioxide Emission Rate (DER) 16.03 -1.04 (-6.1%) kgCO ₂ /m² Pass -1.04 (-6.1%) kgCO ₂ /m² All (-6.1%) kgCO ₂ /m² Pass -1.04 (-6.1%) kgCO ₂ /m² Pass -1.04 (-6.1%) kgCO ₂ /m² Pass -1.04 (-6.1%) kgCO ₂ /m² kgCO ₂ /m² kWh/m²/yr Pass -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) kWh/m²/yr Pass -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) criterion 2 - Limits on design flexibility -1.8 (-4.3%) criterion 2 - Limits on design flexibility -	Fuel for main hea	ting		Mains g	as						
Dwelling Carbon Dioxide Emission Rate (DER) 16.03 -1.04 (-6.1%) kgCO ₂ /m ² kgCO ₂ /m ² kgCO ₂ /m ² 1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 42.29 kWh/m²/yr 40.48 kWh/m²/yr -1.8 (-4.3%) Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element External wall 0.17 (max. 0.30) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Fuel factor			1.00 (ma	ains gas)						
1.04 (-6.1%) kgCO ₂ /m ²	Target Carbon Dioxide Emission Rate (TER)			17.07					$kgCO_2/m^2$		
Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE) 42.29 40.48	Dwelling Carbon Dioxide Emission Rate (DER)			16.03					$kgCO_2/m^2$	[Pass
Target Fabric Energy Efficiency (DFEE) Dwelling Fabric Energy Efficiency (DFEE) 40.48 40.48 40.48 kWh/m²/yr kWh/m²/yr kWh/m²/yr Pass Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 5.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies				-1.04 (-6	5.1%)				kgCO ₂ /m ²		
Dwelling Fabric Energy Efficiency (DFEE) 40.48 -1.8 (-4.3%) Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 Thermal bridging Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies											
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	_										
Criterion 2 – Limits on design flexibility Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Dwelling Fabric E	nergy Efficiency (DFEE)			20()				-	-	
Limiting Fabric Standards 2 Fabric U-values Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2 Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	Cuit a si a sa a a a a a a a a a a a a a a a	and a dead of the litera		-1.8 (-4	3%)				KWn/m²/yr	_	Pass
Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies											
Element Average Highest External wall 0.17 (max. 0.30) 0.18 (max. 0.70) Pass Party wall 0.00 (max. 0.20) - Pass Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	-										
External wall Party wall O.00 (max. 0.20) Roof Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum Maximum O.17 (max. 0.30) O.18 (max. 0.70) O.11 (max. 0.70) O.11 (max. 0.70) O.11 (max. 0.70) O.12 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.19 (max. 0.70) O.10 (max. 0.70) O.11 (max. 0.70) O.11 (max. 0.70) O.12 (max. 0.70) O.13 (max. 0.70) O.15 (max. 0.70) O.16 (max. 0.70) O.17 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.18 (max. 0.70) O.19 (max. 0.70) O.10 (max. 0.35) Openings Openings Thermal bridging Thermal bride thermal bridging Thermal bridging Thermal bridging Thermal											
Party wall Roof O.00 (max. 0.20) Pass Roof Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum Double 10.0 Maximum Double 10.0 Pass 1.20 (max. 0.20) Double 10.10 Pass 1.21 (max. 0.35) Pass 1.22 (max. 2.00) Double 10.10 Pass 1.24 (max. 0.35) Pass 1.25 (max. 3.30) Pass 1.26 (max. 3.30) Pass 1.27 (max. 0.35) Pass 1.28 (max. 3.30) Pass 1.29 (max. 0.35) Pass 1.36 (max. 3.30) Pass 1.36 (max. 3.30) Pass 1.37 (h.m²) @ 50 Pa Pass Limiting System Efficiencies			_	0.20)		_		0)		ſ	
Roof 0.11 (max. 0.20) 0.11 (max. 0.35) Pass Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			·	17		0.18	(max. 0.7)	0)		l I	
Openings 1.22 (max. 2.00) 1.36 (max. 3.30) Pass 2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	· ·					- 0 11	(may 0.2)	Ε/		l I	
2a Thermal bridging Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals 5.00 (design value) m³/(h.m²) @ 50 Pa Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies		· ·			, , ,			•		l I	
Thermal bridging calculated from linear thermal transmittances for each junction 3 Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies	_	ing	1.22 (IIId)	2.00)		1.30	(πια λ. 3.3)	<i>∪</i> ₁		L	1.033
Air permeability Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			ar thermal	trancmit	tances for each	n iuncti	on				
Air permeability at 50 pascals Maximum 5.00 (design value) m³/(h.m²) @ 50 Pa m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			ar trierrial	ti ai i Si i i i l	tarices for edci	Julicul	011				
Maximum 10.0 m³/(h.m²) @ 50 Pa Pass Limiting System Efficiencies			•	5 00 /45	sign value)			m3//L	m²) @ [0 p	2	
Limiting System Efficiencies		ity at 50 pascals			oigii vaiue)				, -		Dacc
				10.0				111 / (11	, @ 30 P	,1	1,022
	4 Heating efficien										

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

BUILDING REGULATION COMPLIANCE Calculation Type: New Build (As Designed)

Main heating system	Boiler system with radiators or underfloor - Mains gas	Pass		
	Data from database			
	Potterton ASSURE 36 COMBI			
	Combi boiler Efficiency: 89.0% SEDBUK2009			
	Minimum: 88.0%			
Secondary heating system	None			
<u>5 Cylinder insulation</u>				
Hot water storage	No cylinder			
6 Controls				
Space heating controls	Time and temperature zone control	Pass		
Hot water controls	No cylinder	FdSS		
Boiler interlock	Yes	Pass		
7 Low energy lights				
Percentage of fixed lights with low-energy	100 %			
fittings				
Minimum	75 %	Pass		
8 Mechanical ventilation				
Continuous extract system (decentralised)				
Specific fan power	0.1900 0.1800			
Maximum	0.7	Pass		
Criterion 3 – Limiting the effects of heat gains in sun	nmer			
9 Summertime temperature				
Overheating risk (South East England)	Slight	Pass		
Based on:				
Overshading	Average			
Windows facing South	14.09 m², No overhang			
Air change rate	4.00 ach			
Blinds/curtains	None			
Criterion 4 – Building performance consistent with D	DER and DFEE rate			
Party Walls				
Туре	U-value			
Filled Cavity with Edge Sealing	0.00 W/m²K	Pass		
Air permeability and pressure testing				
3 Air permeability				
Air permeability at 50 pascals	5.00 (design value) m ³ /(h.m ²) @ 50 Pa	a		
Maximum	10.0 m ³ /(h.m ²) @ 50 Pa			
10 Key features	, () @ 5010			
Darty wall H-value	0.00			
Party wall U-value	0.00 W/m²K			
Roof U-value	0.11 W/m²K			

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England **Elmhurst Energy Systems** SAP2012 Calculator (Design System) version 4.12r02

RECOMMENDATIONS

	Typical cost	Typical savings per year	Energy efficiency	Environmental impact	Result
Low energy lights			0	0	Already installed
Solar water heating			0	0	Not applicable
Photovoltaic			0	0	Not applicable
Wind turbine			0	0	Not applicable
Totals	£0	£0	R 84	R 88	

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.12r02